Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(10): e202318516, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38241198

RESUMO

In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.

2.
ACS Appl Mater Interfaces ; 15(33): 39896-39904, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555378

RESUMO

Developing polymer-based organic afterglow materials with switchable ultralong organic phosphorescence (UOP) that are insensitive to moisture remains challenging. Herein, two organic luminogens, BBCC and BBCS, were synthesized by attaching 7H-benzo[c]carbazole (BBC) to benzophenone and diphenyl sulfone. These two emitters were employed as guest molecules and doped into epoxy polymers (EPs), which were constructed by in situ polymerization to achieve polymer materials BBCC-EP and BBCS-EP. It was found that BBCC-EP and BBCS-EP films exhibited significant photoactivated UOP properties. After light irradiation, they could produce a conspicuous organic afterglow with phosphorescence quantum yields and lifetimes up to 5.35% and 1.91 s, respectively. Meanwhile, BBCS-EP also presented photochromic characteristics. Upon thermal annealing, the UOP could be turned off, and the polymer films recovered to their pristine state, showing switchable organic afterglow. In addition, BBCC-EP and BBCS-EP displayed excellent water resistance and still produced obvious UOP after soaking in water for 4 weeks. Inspired by the unique photoactivated UOP and photochromic properties, BBCC and BBCS in the mixtures of diglycidyl ether of bisphenol A (DGEBA) and 1,3-propanediamine were employed as security inks for light-controlled multilevel anticounterfeiting. This work may provide helpful guidance for developing photostimuli-responsive polymer-based organic afterglow materials, especially those with stable UOP under ambient conditions.

3.
Chemistry ; 29(5): e202202594, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36318097

RESUMO

The development of circularly polarized thermally activated delayed fluorescence (CP-TADF) luminogens with stimuli-response characteristics remains challenging. Herein, a pair of organic enantiomers, S-CzTA and R-CzTA, with aggregation-induced emission properties, have been successfully developed by introducing chiral 1,2,3,4-tetrahydronaphthalene and carbazole to phthalimide. They present CP-TADF properties in toluene solutions, giving dissymmetric factors of 0.84×10-3 and -1.03×10-3 , respectively. In the crystalline state, both S-CzTA and R-CzTA can emit intense blue TADF and produce very bright sky-blue mechanoluminescence (ML) and remarkable mechanofluorochromism (MFC) under the stimuli of mechanical force. Single-crystal analysis and theoretical calculation results suggest that their ML activities are probably associated with their chiral and polar molecular structures and unique non-centrosymmetric molecular packing modes. Furthermore, the MFC properties of the enantiomers likely originate from the destruction of crystal structure, leading to the planarization of molecular conformation. This work may provide helpful guidance for developing new CP-TADF materials with force-stimuli-responsive properties.


Assuntos
Tetra-Hidronaftalenos , Fluorescência
4.
Angew Chem Int Ed Engl ; 62(7): e202217284, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36512442

RESUMO

In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.

5.
Angew Chem Int Ed Engl ; 62(7): e202217616, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36537720

RESUMO

Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10-6  wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260-340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.

6.
Angew Chem Int Ed Engl ; 61(23): e202201820, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35315193

RESUMO

It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption.

7.
Phys Chem Chem Phys ; 18(13): 8993-9004, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26966730

RESUMO

Both fabrication of Au nano-objects and the nonlinear optical properties of Au nano-objects are the focus of research. In the present work, Au nanoparticles with different mean sizes (18, 32, 42, and 70 nm) are controllably fabricated in ethanol by changing the concentration of poly(vinylpyrrolidone) (PVP) and HAuCl4, as well as the power of continuous wave UV light at 365 nm. PVP acts as both reducing and protective agent. The mechanism of photoreduction of PVP to HAuCl4 is proposed. PVP undergoes a series of chemical reactions which include the attack of the hydrogen atom on the tertiary carbon atom at the α-position of the nitrogen atom, production of a hydroxyl radical, and chain scission. The hydroxyl radical combines with the hydrogen atom produced through the dissociation of HAuCl4, which facilitates the decomposition of HAuCl4. The fabrication mechanism of Au nanoparticles is discussed. The nonlinear absorption of these Au nanoparticles is investigated; all of them exhibit saturable absorption, and the saturable absorption dominates the nonlinear absorption with the increase of laser energy. The dominance of saturable absorption in the nonlinear absorption is due to the stronger single-photon absorbed intraband absorption from the ground state to the first excited state in the conduction band, the weaker excited state absorption in the conduction band, and the weaker two-photon absorption from the d band to the conduction band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA