Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(5): 1446-1454, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751022

RESUMO

The global proteome analysis was limited by the identification of peptides with low abundance or specific physiochemical properties. Here, a one-dimensional online alkaline-pH reverse phase nanoelectrospray-tandem mass spectrometry (alkaline-pH-MS/MS) method was developed and optimized for global proteomic analysis. In this method, peptides were separated on a nanoflow C18 column with an alkaline-pH mobile phase (pH = 8.0) and directly injected into the mass spectrometer. The unique peptides overlapped between alkaline-pH-MS/MS and conventional online low-pH reverse phase nanoelectrospray-tandem mass spectrometry (low-pH-MS/MS) were as low as 45%, strongly indicating that these two methods were complementary to each other. In addition, alkaline-pH-MS/MS showed identification capacity for a higher proportion of peptides with negative grand average of hydropathy (GRAVY) or high isoelectric point (pI). Compared to low-pH-MS/MS, alkaline-pH-MS/MS enabled enrichment preference toward histidine-, lysine-, methionine-, and proline-containing peptides. The complementarity of alkaline-pH-MS/MS and low-pH-MS/MS was further demonstrated for the analysis of tryptic digests from 15 intrahepatic cholangiocarcinoma (iCCA) cell lines. The alternating 60 min alkaline-pH-MS/MS plus 60 min low-pH-MS/MS method outperformed the conventional 120 min low-pH-MS/MS method in both the identification of amino acid variants and protein groups. Therefore, we established the alkaline-pH-MS/MS method as a simple, competitive, alternative method to low-pH-MS/MS for global proteomic analysis.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Proteômica/métodos , Peptídeos/análise , Proteínas do Sistema Complemento , Proteoma/análise , Concentração de Íons de Hidrogênio
2.
Biochem Pharmacol ; 207: 115376, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513142

RESUMO

Molecular chaperone HSP90 has been considered as a promising target for anti-cancer drug development for years. However, due to the heat shock response induced by the ATP competitive inhibitors against HSP90, the therapeutic efficacies of the compounds are compromised, which consequently restricts the clinical use of HSP90-targeted inhibitors. Therefore, there is a need to discover novel HSP90-targeted modulators which exhibit acceptable inhibition activity against the chaperone and do not induce significant heat shock response in the meantime. Here in this study, we firstly developed a tip-based affinity selection-mass spectrometry platform with optimized experimental conditions/parameters for HSP90-targeted active compound screening, and then applied it to fish out inhibitors against HSP90 from a collection of 2,395 compounds composed of FDA-approved drugs and drug candidates. Dipyridamole, which acts as an anti-thrombotic agent by modulating multiple targets and has a long history of safe use, was identified to interact with HSP90's N-terminal domain. The following conducted biophysical and biochemical experiments demonstrated that Dipyridamole could bind to HSP90's ATP binding pocket and function as an ATP competitive inhibitor of the chaperone. Finally, cellular-based assays including CESTA, cell viability assessment and proteomic analysis etc. were performed to evaluate whether the interaction between HSP90 and Dipyridamole contributes to the anti-tumor effects of the compound. We then found that Dipyridamole inhibits the growth and proliferation of human cancer cells by downregulating cell cycle regulators and upregulating apoptotic cell signaling, which are potentially mediated by the binding of Dipyridamole to HSP90 and to PDEs (phosphodiesterases), respectively.


Assuntos
Dipiridamol , Proteínas de Choque Térmico HSP90 , Neoplasias , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dipiridamol/farmacologia , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteômica , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA