Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 11(1): 18663, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545147

RESUMO

Drought resistance of psammophyte determines survival and growth, but their responses to drought are not well understood. We conducted a pot experiment to study how physiological characteristics respond to drought and rehydration. We found that watering to 60-65% of field capacity (the control) provided more water than was required by Agriophyllum squarrosum and its leaves became yellow and slightly wilted. The total chlorophyll content and Fm (maximum fluorescence after dark adaptation) in control were lower than in the drought treatment, and both decreased after rehydration. With increasing drought duration and intensity, the relative water content (RWC), chlorophyll content, Fm, and the quantum efficiency of photosystem II (Fv/Fm) of Setaria viridis decreased, but malondialdehyde and membrane permeability increased. During the late drought, the activities of three antioxidant enzymes in A. squarrosum increased to prevent membrane lipid peroxidation; for S. viridis, only peroxidase and superoxide dismutase activities increased. After rehydration, RWC of both species increased, but Fv/Fm of A. squarrosum and Fm of S. viridis did not recover under severe drought. Our research illustrated that A. squarrosum is better adapted to arid environment than S. viridis, but the high soil moisture content is not conducive to normal growth of A. squarrosum.


Assuntos
Amaranthaceae/metabolismo , Setaria (Planta)/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica/fisiologia , Amaranthaceae/crescimento & desenvolvimento , Amaranthaceae/fisiologia , Antioxidantes/metabolismo , Clorofila , Conservação dos Recursos Naturais/métodos , Secas , Recuperação e Remediação Ambiental/métodos , Mongólia , Peroxirredoxinas/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/fisiologia , Solo/química , Água/análise
2.
Front Plant Sci ; 12: 698054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539692

RESUMO

Plant fine root turnover is a continuous process both spatially and temporally, and fine root decomposition is affected by many biotic and abiotic factors. However, the effect of the living roots and the associated mycorrhizal fungal mycelia on fine root decomposition remains unclear. The objective of this study is to explore the influence of these biotic factors on fine root decomposition in a semi-arid ecosystem. In this study, we investigated the effect of fine roots and mycelia on fine root decomposition of a pioneer shrub (Artemisia halodendron) in Horqin sandy land, northeast China, by the ingrowth core method combined with the litterbag method. Litterbags were installed in cores. Results showed that core a allowed the growth of both fine roots and mycelia (treatment R + M), core b only allowed the growth of mycelia (treatment M), and in core c the fine root and mycelia growth were restricted and only bulk soil was present (treatment S). These findings suggest that the process of root decomposition was significantly affected by the living roots and mycelia, and carbon (C) and nitrogen (N) concentration dynamics during root decomposition differed among treatments. Mycelia significantly stimulated the mass loss and C and N release during root decomposition. Treatment R + M significantly stimulated the accumulation of soil total C, total N, and organic N under litterbags. The mycelia significantly stimulated the accumulation of the inorganic N (ammonium-N and nitrate-N) but the presence of fine roots weakened nitrate-N accumulation. The presence of living roots and associated mycelia strongly affected the process of root decomposition and matter release in the litter-soil system. The results of this study should strengthen the understanding of root-soil interactions.

3.
Front Microbiol ; 12: 684386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248904

RESUMO

Bacterial, archaeal, and eukaryota diversity in mountainous areas varies along elevational gradients, but details remain unclear. Here, we use a next-generation sequencing method based on 16S/18S rRNA to reveal the soil microbial diversity and community compositions of alpine meadow ecosystems along an elevation span of nearly 2,000 m (1,936-3,896 m) in China's Qilian Mountains. Both bacterial and eukaryota diversity increased linearly with increasing elevation, whereas archaeal diversity increased, but not significantly. The diversity patterns of several phyla in the bacterial, archaeal, and eukaryota communities were consistent with the overall elevational trend, but some phyla did not follow this pattern. The soil microbial community compositions were shaped by the coupled effects of regional climate and local soil properties. Intradomain links were more important than interdomain links in the microbial network of the alpine meadows, and these links were mostly positive. The bacteria formed more connections than either archaea or eukaryota, but archaea may be more important than bacteria in building the soil microbial co-occurrence network in this region. Our results provide new visions on the formation and maintenance of soil microbial diversity along an elevational gradient and have implications for microbial responses to climate change in alpine ecosystems.

4.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759799

RESUMO

Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6-8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land.

5.
Front Plant Sci ; 11: 961, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670344

RESUMO

Artemisia halodendron Turcz. ex Besser occurs following the appearance of a pioneer species, Agriophyllum squarrosum (L.) Moq., with the former replacing the latter during the naturally vegetation succession in sandy dune regions in China. A previous study revealed that the foliage litter of A. halodendron had strong negative allelopathic effects on germination of the soil seed bank and on the seedling growth. However, whether this allelopathic effect varies with litter types and with the identity of plant species has not yet been studied. We, therefore, carried out a seed germination experiment to determine the allelopathic effects of three ltter types of A. halodendron (roots, foliage, and stems) on seed germination of six plant species that progressively occur along a successional gradient in the semi-arid grasslands in the Horqin Sandy Land of northeastern China. In line with our expectation, we found that the early-successional species rather than the late-successional species were negatively affected by A. halodendron and that the allelopathic effects on seed germination increase with increasing concentration of litter extracts, irrespective of litter types. Our study evidenced the negative allelopathic effects of A. halodendron on the species replacement and on the community composition during dune stabilization in the Horqin Sandy Land. Further studies are needed to better understand the successional process and thus to promote the vegetation restoration in that sandy dune region as A. halodendron itself disappeared also during the process.

6.
Front Plant Sci ; 11: 588865, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384703

RESUMO

Caragana microphylla is a sand-fixing leguminous shrub with strong resistance to drought, cold, and low soil fertility. As a result, it plays an essential role in combating desertification in northern China, but little is known about its nutrient budget. Nutrient resorption is a key process in plant nutrient conservation and has marked ecological implications for plant fitness and ecosystem nutrient cycling. We studied the effects of both nitrogen (N) addition and reproductive effort on leaf N resorption of C. microphylla in a temperate semi-arid sandy land in China. The results showed that sprouting of the early leaves from over-wintered buds employs a strategy for slow returns on nutrient investment with smaller specific leaf area (SLA) and higher N resorption efficiency, whereas the late leaves, which sprout from current-year buds, employ a strategy for quick returns on nutrient investment with higher SLA and lower N resorption efficiency. N addition significantly increased the N resorption efficiency from early leaves while exerting no impact on late leaves, suggesting that the increased N recovery from early leaves is done to sustain the high N demands of late leaves. Reproductive effort did not affect the N resorption from early or late leaves due to the temporal separation between fruit production and leaf senescence. Taken together, our results demonstrate that C. microphylla has evolved different investment strategies for leaf N in early and late leaves to conserve nutrients and facilitate its growth in desertified environments.

7.
Plants (Basel) ; 8(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340533

RESUMO

The availability of water is the critical factor driving plant growth, physiological responses, population and community succession in arid and semiarid regions, thus a precipitation addition-reduction platform with five experimental treatments, was established to explore the growth and physiology of two psammophytes (also known as psammophiles) to precipitation manipulation in Horqin Sandy Land. Changes in coverage and density were measured, and antioxidant enzymes and osmoregulatory substances in both of the studied species were determined. Investigation results showed that the average vegetation coverage increased with an increasing precipitation, and reached a maximum in July. Under the -60% precipitation treatment, Tribulus terrestris accounted for a large proportion of the area, but Bassia dasyphylla was the dominant species in the +60% treatment. T. terrestris was found to have higher a drought stress resistance than B. dasyphylla. From days 4 to 7 after rainfall, B. dasyphylla under precipitation reduction showed obvious water stress. The malondialdehyde (MDA) content of B. dasyphylla was higher than that of T. terrestris, but that of B. dasyphylla had the lower relative water content (RWC). The MDA content in the precipitation reduction treatments of the two studied species was higher than that in the precipitation addition treatments from days 4 to 10. Peroxidase (POD) and superoxide dismutase (SOD) activity and the soluble proteins and free proline content of T. terrestris were higher than those of B. dasyphylla. The free proline content of T. terrestris and B. dasyphylla increased with increasing drought stress. Our data illustrated that T. terrestris had a higher drought stress resistance than B. dasyphylla, which was correlated with the augmentation of some antioxidant enzymes and osmoregulatory substance. The adaptive mechanism provides solid physiological support for an understanding of psammophyte adaptation to drought stress, and of community succession or species manipulation for desertified land restoration.

8.
Sci Rep ; 8(1): 8787, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884865

RESUMO

The agro-pastoral ecotone of northern China is one of the areas most sensitive to global temperature change. To analyze the temporal and spatial trends of extreme temperature events in this area, we calculated the values of 16 extreme-temperature indices from 1960 to 2016 based on data from 45 national meteorological stations. We found that the coldest-temperature indices decreased significantly and the warmest-temperature indices increased significantly. The warming of night temperatures contributed more than warming of day temperatures to the overall warming trend. In addition, the warm-temperature indices appeared to be increasing since the late 1980s and early 1990s. Overall, though the four extremal indices showed an increasing trend, the rate of change in the minimum temperature was greater than that of the maximum temperature; thus, the minimum temperature contributed most strongly to the overall temperature increases. The growing season is being prolonged in higher-elevation areas, but vegetation maturation in lower-elevation areas has been accelerated by the high temperatures, potentially leading to a shorter growing season at low altitudes. However, the impacts of land-use changes caused by human activities on the temperature increases will require additional study.

9.
PLoS One ; 13(5): e0197451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771979

RESUMO

The spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) densities plays a profound important role in estimating carbon and nitrogen budgets. Naiman Banner located in northern China was chosen as research site, a total of 332 soil samples were taken in a depth of 100 cm from the low hilly land in the southern part, sandy land in the middle part and an alluvial plain in the northern part of the county. The results showed that SOC and TN density initially decreased and then increased from the north to the south, The highest densities, were generally in the south, with the lowest generally in the middle part. The SOC and TN densities in cropland were significantly greater than those in woodland and grassland in the alluvial plains and for Naiman as a whole. The woodland SOC and TN density were higher than those of grassland in the low hilly land, and higher densities of SOC and TN in grassland than woodland in the sandy land and low hilly land. There were significant differences in SOC and TN densities among the five soil types of Cambisols, Arenosols, Gleysols, Argosols, and Kastanozems. In addition, SOC and TN contents generally decreased with increasing soil depth, but increased below a depth of 40 cm in the Cambisols and became roughly constant at this depth in the Kastanozems. There is considerable potential to sequester carbon and nitrogen in the soil via the conversion of degraded sandy land into woodland and grassland in alluvial plain, and more grassland should be established in sandy land and low hilly land.


Assuntos
Carbono/análise , Nitrogênio/análise , Solo/química , China , Florestas , Pradaria
10.
Ecol Evol ; 8(3): 1693-1704, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435244

RESUMO

Plant species affect soil bacterial diversity and compositions. However, little is known about the role of dominant plant species in shaping the soil bacterial community during the restoration of sandy grasslands in Horqin Sandy Land, northern China. We established a mesocosm pots experiment to investigate short-term responses of soil bacterial diversity and composition, and the related soil properties in degraded soils without vegetation (bare sand as the control, CK) to restoration with five plant species that dominate across restoration stages: Agriophyllum squarrosum (AS), Artemisia halodendron (AH), Setaria viridis (SV), Chenopodium acuminatum (CA), and Corispermum macrocarpum (CM). We used redundancy analysis (RDA) to analyze the association between soil bacterial composition and soil properties in different plant species. Our results indicated that soil bacterial diversity was significantly lower in vegetated soils independent of plant species than in the CK. Specifically, soil bacterial species richness and diversity were lower under the shrub AH and the herbaceous plants AS, SV, and CA, and soil bacterial abundance was lower under AH compared with the CK. A field investigation confirmed the same trends where soil bacteria diversity was lower under AS and AH than in bare sand. The high-sequence annotation analysis showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most common phyla in sandy land irrespective of soil plant cover. The OTUs (operational taxonomic units) indicated that some bacterial species were specific to the host plants. Relative to bare sand (CK), soils with vegetative cover exhibited lower soil water content and temperature, and higher soil carbon and nitrogen contents. The RDA result indicated that, in addition to plant species, soil water and nitrogen contents were the most important factors shaping soil bacterial composition in semiarid sandy land. Our study from the pot and field investigations clearly demonstrated that planting dominant species in bare sand impacts bacterial diversity. In semiarid ecosystems, changes in the dominant plant species during vegetation restoration efforts can affect the soil bacterial diversity and composition through the direct effects of plants and the indirect effects of soil properties that are driven by plant species.

11.
J Plant Res ; 130(6): 1013-1021, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28534178

RESUMO

Vegetation recovery during succession is an important process for ecological restoration of the soil, especially in degraded sandy land. However, the driving mechanisms, such as how a pioneer species competes with other species, is uncertain. In China's Horqin Sandy Land, Artemisia halodendron is an important shrub that is common on semi-fixed dunes, where it replaces Agriophyllum squarrosum during succession, and is an important indicator species of the second stage of dune stabilization. However, how it outcompetes other species is still unclear. In this study, we conducted a seed bank germination experiment using soil from the native habitats of A. halodendron on semi-fixed dunes. We covered the soil with foliage litter of A. halodendron at a range of concentrations. Seed germination and seedling growth were strongly affected by the foliage litter. Seed germination and seedling growth were not harmed by a low concentration (≤50 g m-2) of the foliage litter but severely inhibited by high concentrations (≥100 g m-2). Strong allelopathy, indicated by decreased germination, increased seedling loss, and decreased plant biomass, appeared during the later stages of germination (after about 20 days of incubation). Our results suggest that as a pioneer shrub during the vegetation succession that occurs during dune stabilization, A. halodendron outcompeted other species through the allelopathic effect of its foliage litter. This helps to explain the patchy distribution and heterogeneity of vegetation communities in the Horqin Sandy Land.


Assuntos
Artemisia/fisiologia , Germinação/fisiologia , Alelopatia , Artemisia/crescimento & desenvolvimento , Biomassa , China , Ecossistema , Pradaria , Folhas de Planta/fisiologia , Banco de Sementes , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Solo
12.
Ecol Evol ; 7(4): 1125-1134, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28303183

RESUMO

Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community-level traits varied with habitat changes and soil gradients using both abundance-weighted and non-weighted averages of trait values. We quantified the relative contribution of inter- and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community-average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance-weighted trait was greater than that of a non-weighted trait with regard to all traits except LDMC. A community-level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter- and intraspecific variation further suggests that both effects of inter- and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.

13.
Environ Monit Assess ; 188(1): 21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661957

RESUMO

Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.


Assuntos
Monitoramento Ambiental , Pradaria , Solo/química , Biomassa , China , Clima Desértico , Ecologia , Ecossistema , Poaceae
14.
Ying Yong Sheng Tai Xue Bao ; 25(1): 31-6, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24765839

RESUMO

Artemisia halodendron is a dominant species in mobile and semi-mobile dunes of Horqin Sand Land. To investigate the germination character and seedling growth under different temperature and light conditions, the germination rate, germination index and growth of radicle and plumule were measured after treatments in laboratory and heating cabinet incubations. In the laboratory the light and temperature were near to nature condition, while in the heating cabinet it was kept at 25 degrees C with varying durations of light supply, including 24-, 12- and 0-hour light per day. Germination rate (66.6%) and germination index (19.1%) under laboratory condition were both significantly lower than in the heating cabinet (P < 0.05). In the heating cabinet, the germination rate under 0-hour light was 70.2%, which was insignificantly lower (P > 0.05) than under 12- and 24-hour light conditions (both 73.4%), and the germination index under 24-hour light was 28.2%, which was significantly (P < 0.05) lower than under 0- and 12-hour light conditions (31.3% and 30.8%, respectively). Radicle and plumule growth responded to light more readily than the seed germination rate and germination index during the process of germination, and the radicle growth was inhibited by darkness while promoted by light, and the plumule lengths under 0- and 12-hour light conditions were 2.81 cm and 1.51 cm, respectively, significantly higher than under 24-hour light (1.21 cm) and natural condition (1.27 cm). It was concluded that temperature was a main factor in seed germination, and seedling growth was mainly influenced by light regime.


Assuntos
Artemisia/crescimento & desenvolvimento , Germinação , Plântula/crescimento & desenvolvimento , Temperatura , Luz , Sementes/fisiologia
15.
Ying Yong Sheng Tai Xue Bao ; 23(12): 3496-504, 2012 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-23479896

RESUMO

The formation of plant root exudates is a vital physiological phenomenon in the metabolic processes of plant, and an important link of material turnover in "plant-soil" system. To study the plant root exudates is of significance in understanding the matter and energy flow, carbon and nitrogen balance, and improvement of primary production in terrestrial ecosystems. This paper reviewed the ecological effect of plant root exudates, such as the effect on plant physiological processes, soil microorganisms, soil matter turnover, and degradation of soil organic contaminants, and summarized the related affecting factors, including soil heavy metals and nutrient contents, soil moisture, light, and heat conditions, plant gene type, soil microorganisms, and input of exogenous organic contaminants. Based on the present research status of plant root exudates, the future research directions about the objects, methods, and effect assessment were prospected.


Assuntos
Ecossistema , Exsudatos de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Desenvolvimento Vegetal , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA