Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 222: 116064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373595

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of neurons in the brain. However, there are no effective drugs for AD. Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs), as a new mediator of intercellular communication, are associated with low immunogenicity, low risk of tumor formation, and good safety profile. Therefore, MSCs-EVs may be a safe and attractive cell-free nanotherapeutics, offering a new perspective for AD treatment. Although preclinical studies have demonstrated that MSCs-EVs have significant neuroprotective effects, the underlying mechanism is unclear. This study aimed to: outline the diagnostic and delivery roles of MSCs-EVs for AD treatment; summarize the optimal sources and delivery methods of MSCs-EVs; provide a comprehensive review on the neuroprotective mechanisms of MSCs-EVs; explore how to enhance the neuroprotective effects of MSCs-EVs; and discuss the limitations and potential of their translation to the clinic. Therefore, this study may provide a more precise theoretical reference and practical basis for clinical research of MSCs-EVs.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Brain Res ; 1822: 148603, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748570

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Medicina Tradicional Chinesa , Microglia/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia
3.
World J Stem Cells ; 15(3): 52-70, 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37007453

RESUMO

Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells (MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of studies suggest that the therapeutic effect after transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-Exos). And this cell-free mediated therapy appears to circumvent many risks and difficulties when compared to cell therapy, and it may be the most promising new strategy for treating stroke as stem cell replacement therapy. Studies suggest that suppressing inflammation via modulation of the immune response is an additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflammatory immune response following IS by modulating the central nervous system, the peripheral immune system, and immunomodulatory molecules, thereby promoting neurofunctional recovery after stroke. Thus, this paper reviews the role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS inflammation in order to identify new research targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA