Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(3): 109243, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420592

RESUMO

Accurate tumor diagnosis by pathologists relies on identifying specific morphological characteristics. However, summarizing these unique morphological features in tumor classifications can be challenging. Although deep learning models have been extensively studied for tumor classification, their indirect and subjective interpretation obstructs pathologists from comprehending the model and discerning the morphological features accountable for classifications. In this study, we introduce a new approach utilizing Style Generative Adversarial Networks, which enables a direct interpretation of deep learning models to detect significant morphological characteristics within datasets representing patients with deficient mismatch repair/microsatellite instability-high gastric cancer. Our approach effectively identifies distinct morphological features crucial for tumor classification, offering valuable insights for pathologists to enhance diagnostic accuracy and foster professional growth.

2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834687

RESUMO

Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2.


Assuntos
Berberina , Traumatismos Cardíacos , Animais , Ratos , Apoptose , Berberina/farmacologia , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Fibrose , Traumatismos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA