Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Leuk Lymphoma ; 65(5): 618-628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337191

RESUMO

Personalized risk stratification and treatment may help improve outcomes among patients with diffuse large B-cell lymphoma (DLBCL). We developed a next-generation sequencing (NGS)-based method to assess a range of potential prognostic indicators, and evaluated it using pretreatment plasma samples from 310 patients with previously untreated DLBCL from the GOYA trial (NCT01287741). Variant calls and DLBCL subtyping with the plasma-based method were concordant with corresponding tissue-based methods. Patients with a tumor burden greater than the median (p = .003) and non-germinal center B-cell-like (non-GCB) DLBCL (p = .049) had worse progression-free survival than patients with a tumor burden less than the median or GCB DLBCL. Multi-factor assessment combining orthogonal features from a single pretreatment plasma sample has promise as a prognostic indicator in this setting (p = .085). This minimally invasive plasma-based NGS assay could enable comprehensive prognostic assessment of patients in a clinical setting, with greater accessibility than current methods.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Sequenciamento de Nucleotídeos em Larga Escala , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/sangue , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/diagnóstico , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/sangue , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Carga Tumoral , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação , Idoso de 80 Anos ou mais
2.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943978

RESUMO

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Assuntos
Imunidade Adaptativa , COVID-19 , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Imunidade Adaptativa/genética , Idoso , Linfócitos B/imunologia , COVID-19/genética , COVID-19/imunologia , Loci Gênicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , SARS-CoV-2/imunologia , Soroconversão , Linfócitos T/imunologia
3.
EClinicalMedicine ; 48: 101438, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600330

RESUMO

Background: Disease progression of subjects with coronavirus disease 2019 (COVID-19) varies dramatically. Understanding the various types of immune response to SARS-CoV-2 is critical for better clinical management of coronavirus outbreaks and to potentially improve future therapies. Disease dynamics can be characterized by deciphering the adaptive immune response. Methods: In this cross-sectional study we analyzed 117 peripheral blood immune repertoires from healthy controls and subjects with mild to severe COVID-19 disease to elucidate the interplay between B and T cells. We used an immune repertoire Primer Extension Target Enrichment method (immunoPETE) to sequence simultaneously human leukocyte antigen (HLA) restricted T cell receptor beta chain (TRB) and unrestricted T cell receptor delta chain (TRD) and immunoglobulin heavy chain (IgH) immune receptor repertoires. The distribution was analyzed of TRB, TRD and IgH clones between healthy and COVID-19 infected subjects. Using McFadden's Adjusted R2 variables were examined for a predictive model. The aim of this study is to analyze the influence of the adaptive immune repertoire on the severity of the disease (value on the World Health Organization Clinical Progression Scale) in COVID-19. Findings: Combining clinical metadata with clonotypes of three immune receptor heavy chains (TRB, TRD, and IgH), we found significant associations between COVID-19 disease severity groups and immune receptor sequences of B and T cell compartments. Logistic regression showed an increase in shared IgH clonal types and decrease of TRD in subjects with severe COVID-19. The probability of finding shared clones of TRD clonal types was highest in healthy subjects (controls). Some specific TRB clones seems to be present in severe COVID-19 (Figure S7b). The most informative models (McFadden´s Adjusted R2=0.141) linked disease severity with immune repertoire measures across all three cell types, as well as receptor-specific cell counts, highlighting the importance of multiple lymphocyte classes in disease progression. Interpretation: Adaptive immune receptor peripheral blood repertoire measures are associated with COVID-19 disease severity. Funding: The study was funded with grants from the Berlin Institute of Health (BIH).

4.
mBio ; 8(1)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223461

RESUMO

DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats.IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.


Assuntos
Adenina/análogos & derivados , Metilação de DNA , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenina/análise , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Lepidópteros/microbiologia , Espectrometria de Massas , Regiões Promotoras Genéticas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de DNA , Virulência
5.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836852

RESUMO

Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. IMPORTANCE: Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation.


Assuntos
Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , Genoma Bacteriano , Listeria monocytogenes/genética , Genômica , Alinhamento de Sequência , Sintenia
6.
PLoS One ; 10(4): e0123639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860355

RESUMO

The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases) associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems), indicating the high diversity of methylation patterns present in Salmonella.


Assuntos
Metilação de DNA , Epigenômica , Genoma Bacteriano , Salmonella enterica/genética , Sequência de Bases , Perfilação da Expressão Gênica , Metiltransferases/genética , Motivos de Nucleotídeos
7.
Nucleic Acids Res ; 43(4): 2102-15, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662217

RESUMO

Base J (ß-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication.


Assuntos
Glucosídeos/análise , Uracila/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Glucosídeos/metabolismo , Leishmania/genética , Plasmídeos/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Uracila/análise , Uracila/metabolismo
8.
Genome Biol Evol ; 6(12): 3252-66, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25381664

RESUMO

The Campylobacter lari group is a phylogenetic clade within the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter spp., a division within the genus that includes the human pathogen Campylobacter jejuni. The C. lari group is currently composed of five species (C. lari, Campylobacter insulaenigrae, Campylobacter volucris, Campylobacter subantarcticus, and Campylobacter peloridis), as well as a group of strains termed the urease-positive thermophilic Campylobacter (UPTC) and other C. lari-like strains. Here we present the complete genome sequences of 11 C. lari group strains, including the five C. lari group species, four UPTC strains, and a lari-like strain isolated in this study. The genome of C. lari subsp. lari strain RM2100 was described previously. Analysis of the C. lari group genomes indicates that this group is highly related at the genome level. Furthermore, these genomes are strongly syntenic with minor rearrangements occurring only in 4 of the 12 genomes studied. The C. lari group can be bifurcated, based on the flagella and flagellar modification genes. Genomic analysis of the UPTC strains indicated that these organisms are variable but highly similar, closely related to but distinct from C. lari. Additionally, the C. lari group contains multiple genes encoding hemagglutination domain proteins, which are either contingency genes or linked to conserved contingency genes. Many of the features identified in strain RM2100, such as major deficiencies in amino acid biosynthesis and energy metabolism, are conserved across all 12 genomes, suggesting that these common features may play a role in the association of the C. lari group with coastal environments and watersheds.


Assuntos
Campylobacter lari/genética , Evolução Molecular , Genoma Bacteriano , Rearranjo Gênico , Filogenia , Alinhamento de Sequência
9.
Proc Natl Acad Sci U S A ; 111(48): E5149-58, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25406324

RESUMO

TET/JBP enzymes oxidize 5-methylpyrimidines in DNA. In mammals, the oxidized methylcytosines (oxi-mCs) function as epigenetic marks and likely intermediates in DNA demethylation. Here we present a method based on diglucosylation of 5-hydroxymethylcytosine (5hmC) to simultaneously map 5hmC, 5-formylcytosine, and 5-carboxylcytosine at near-base-pair resolution. We have used the method to map the distribution of oxi-mC across the genome of Coprinopsis cinerea, a basidiomycete that encodes 47 TET/JBP paralogs in a previously unidentified class of DNA transposons. Like 5-methylcytosine residues from which they are derived, oxi-mC modifications are enriched at centromeres, TET/JBP transposons, and multicopy paralogous genes that are not expressed, but rarely mark genes whose expression changes between two developmental stages. Our study provides evidence for the emergence of an epigenetic regulatory system through recruitment of selfish elements in a eukaryotic lineage, and describes a method to map all three different species of oxi-mCs simultaneously.


Assuntos
5-Metilcitosina/metabolismo , Basidiomycota/metabolismo , Dioxigenases/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Cromossomos Fúngicos/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Dioxigenases/genética , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Células HEK293 , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Oxirredução , Análise de Sequência/métodos , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
10.
Sci Transl Med ; 6(254): 254ra126, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232178

RESUMO

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.


Assuntos
Proteínas de Bactérias/biossíntese , Infecção Hospitalar , Enterobacteriaceae/enzimologia , Plasmídeos , beta-Lactamases/biossíntese , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Hospitais Públicos , Humanos , National Institutes of Health (U.S.) , Vigilância da População , Reação em Cadeia da Polimerase em Tempo Real , Estados Unidos
11.
Nat Commun ; 5: 3951, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899568

RESUMO

Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across the genomes of B7A and FF75 with >90% agreement: single molecule, real-time sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT on both strands of GpsAAC/GpsTTC motifs, but with only 12% of 40,701 possible sites modified. In contrast, PT in FF75 occurs as a single-strand modification at CpsCA, again with only 14% of 160,541 sites modified. Single-molecule analysis indicates that modification could be partial at any particular genomic site even with active restriction by DndF-H, with direct interaction of modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results point to highly unusual target selection by PT-modification proteins and rule out known R-M mechanisms.


Assuntos
Sequência Consenso/genética , DNA Bacteriano/genética , Escherichia coli/genética , Genoma Bacteriano , Fosfatos/metabolismo , Vibrio/genética , Mapeamento Cromossômico , Enzimas de Restrição-Modificação do DNA , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Vibrio/metabolismo
13.
Nucleic Acids Res ; 42(4): 2415-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302578

RESUMO

The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.


Assuntos
Metilação de DNA , Helicobacter pylori/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Genes Bacterianos , Genoma Bacteriano , Mutação , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 110(48): E4658-67, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218615

RESUMO

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs.


Assuntos
Caulobacter/genética , Ciclo Celular/genética , Metilação de DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Adenina/metabolismo , Sequência de Bases , Caulobacter/metabolismo , Clonagem Molecular , Biologia Computacional , Citosina/metabolismo , Cinética , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
J Bacteriol ; 195(21): 4966-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995632

RESUMO

We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.


Assuntos
Metilação de DNA/fisiologia , DNA Bacteriano/metabolismo , Metais/metabolismo , Shewanella/metabolismo , Cromossomos Bacterianos , Reparo de Erro de Pareamento de DNA , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Metais/química , Mutação , Técnicas de Amplificação de Ácido Nucleico , Oxirredução , Filogenia , Shewanella/classificação , Shewanella/genética , Transcriptoma
16.
Nat Commun ; 4: 1764, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612305

RESUMO

Haplogroup H dominates present-day Western European mitochondrial DNA variability (>40%), yet was less common (~19%) among Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete haplogroup H mitochondrial genomes from ancient human remains. We then compare this 'real-time' genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of haplogroup H were largely established by the Mid Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated haplogroup H genomes allow us to reconstruct the recent evolutionary history of haplogroup H and reveal a mutation rate 45% higher than current estimates for human mitochondria.


Assuntos
Genoma Humano/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Filogenia , População Branca/genética , Sequência de Bases , Demografia , Evolução Molecular , Genética Populacional , Humanos , Dados de Sequência Molecular , Análise de Componente Principal , Análise de Sequência de DNA , Fatores de Tempo
17.
Genome Announc ; 1(2): e0008113, 2013 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-23516208

RESUMO

We report a closed genome of Salmonella enterica subsp. enterica serovar Javiana (S. Javiana). This serotype is a common food-borne pathogen and is often associated with fresh-cut produce. Complete (finished) genome assemblies will support pilot studies testing the utility of next-generation sequencing (NGS) technologies in public health laboratories.

18.
PLoS Comput Biol ; 9(3): e1002935, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516341

RESUMO

DNA modifications such as methylation and DNA damage can play critical regulatory roles in biological systems. Single molecule, real time (SMRT) sequencing technology generates DNA sequences as well as DNA polymerase kinetic information that can be used for the direct detection of DNA modifications. We demonstrate that local sequence context has a strong impact on DNA polymerase kinetics in the neighborhood of the incorporation site during the DNA synthesis reaction, allowing for the possibility of estimating the expected kinetic rate of the enzyme at the incorporation site using kinetic rate information collected from existing SMRT sequencing data (historical data) covering the same local sequence contexts of interest. We develop an Empirical Bayesian hierarchical model for incorporating historical data. Our results show that the model could greatly increase DNA modification detection accuracy, and reduce requirement of control data coverage. For some DNA modifications that have a strong signal, a control sample is not even needed by using historical data as alternative to control. Thus, sequencing costs can be greatly reduced by using the model. We implemented the model in a R package named seqPatch, which is available at https://github.com/zhixingfeng/seqPatch.


Assuntos
Biologia Computacional/métodos , DNA Bacteriano/química , Análise de Sequência de DNA/métodos , Teorema de Bayes , Metilação de DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Cinética , Modelos Genéticos , Conformação de Ácido Nucleico
19.
PLoS Genet ; 9(1): e1003191, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300489

RESUMO

In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N(6)-methyladenine (6 mA) and N(4)-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria (5'-CTAT-3'), as well as a more complex Type I m6A sequence motif in M. pneumoniae (5'-GAN(7)TAY-3'/3'-CTN(7)ATR-5'). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism.


Assuntos
Metilação de DNA/genética , Mycoplasma genitalium , Mycoplasma pneumoniae , Motivos de Nucleotídeos/genética , Regulação da Expressão Gênica em Archaea , Genoma Bacteriano , Humanos , Metiltransferases/genética , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/metabolismo
20.
BMC Biol ; 11: 4, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23339471

RESUMO

BACKGROUND: DNA methylation serves as an important epigenetic mark in both eukaryotic and prokaryotic organisms. In eukaryotes, the most common epigenetic mark is 5-methylcytosine, whereas prokaryotes can have 6-methyladenine, 4-methylcytosine, or 5-methylcytosine. Single-molecule, real-time sequencing is capable of directly detecting all three types of modified bases. However, the kinetic signature of 5-methylcytosine is subtle, which presents a challenge for detection. We investigated whether conversion of 5-methylcytosine to 5-carboxylcytosine using the enzyme Tet1 would enhance the kinetic signature, thereby improving detection. RESULTS: We characterized the kinetic signatures of various cytosine modifications, demonstrating that 5-carboxylcytosine has a larger impact on the local polymerase rate than 5-methylcytosine. Using Tet1-mediated conversion, we show improved detection of 5-methylcytosine using in vitro methylated templates and apply the method to the characterization of 5-methylcytosine sites in the genomes of Escherichia coli MG1655 and Bacillus halodurans C-125. CONCLUSIONS: We have developed a method for the enhancement of directly detecting 5-methylcytosine during single-molecule, real-time sequencing. Using Tet1 to convert 5-methylcytosine to 5-carboxylcytosine improves the detection rate of this important epigenetic marker, thereby complementing the set of readily detectable microbial base modifications, and enhancing the ability to interrogate eukaryotic epigenetic markers.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA , Metilases de Modificação do DNA/metabolismo , Escherichia coli/enzimologia , Genoma Bacteriano , Cinética , Oxigenases de Função Mista , Oxirredução , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA