Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(10): 3094-3103, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840921

RESUMO

Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence. We also quantified the concentration of silicon (Si) in leaves to estimate silica-based defences. Rice genotypes were aligned along a slow-fast continuum, with slow-growing, late-flowering genotypes versus fast-growing, early-flowering genotypes. Leaf dry matter content and leaf Si concentrations were not aligned with this axis and negatively correlated with each other. Live-fast genotypes exhibited greater expression of OsNPR1, a regulator of the salicylic acid pathway that promotes plant defence while suppressing plant growth. These genotypes also exhibited greater expression of SPL7 and GH3.2, which are also involved in both stress resistance and growth. Our results do not support the hypothesis of a growth-defence trade-off when leaf Si and leaf dry matter content are considered, but they do when hormonal pathway genes are considered. We demonstrate the benefits of combining ecological and molecular approaches to elucidate the growth-defence trade-off, opening new avenues for plant breeding and crop science.


Assuntos
Oryza , Genótipo , Oryza/genética , Melhoramento Vegetal , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Plantas
2.
Curr Opin Plant Biol ; 56: 259-272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32682621

RESUMO

Atmospheric CO2 concentration [CO2] has increased from 260 to 280µmolmol-1 (level during crop domestication up to the industrial revolution) to currently 400 and will reach 550µmolmol-1 by 2050. C3 crops are expected to benefit from elevated [CO2] (e-CO2) thanks to photosynthesis responsiveness to [CO2] but this may require greater sink capacity. We review recent literature on crop e-CO2 responses, related source-sink interactions, how abiotic stresses potentially interact, and prospects to improve e-CO2 response via breeding or genetic engineering. Several lines of evidence suggest that e-CO2 responsiveness is related either to sink intrinsic capacity or adaptive plasticity, for example, involving enhanced branching. Wild relatives and old cultivars mostly showed lower photosynthetic rates, less downward acclimation of photosynthesis to e-CO2 and responded strongly to e-CO2 due to greater phenotypic plasticity. While reverting to such archaic traits would be an inappropriate strategy for breeding, we argue that substantial enhancement of vegetative sink vigor, inflorescence size and/or number and root sinks will be necessary to fully benefit from e-CO2. Potential ideotype features based on enhanced sinks are discussed. The generic 'feast-famine' sugar signaling pathway may be suited to engineer sink strength tissue-specifically and stage-specifically and help validate ideotype concepts. Finally, we argue that models better accounting for acclimation to e-CO2 are needed to predict which trait combinations should be targeted by breeders for a CO2-rich world.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Aclimatação , Carbono , Produtos Agrícolas/genética , Fotossíntese
3.
Front Plant Sci ; 11: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194601

RESUMO

Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.

4.
Plant Cell Environ ; 43(3): 579-593, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961455

RESUMO

This study aimed to understand the response of photosynthesis and growth to e-CO2 conditions (800 vs. 400 µmol mol-1 ) of rice genotypes differing in source-sink relationships. A proxy trait called local C source-sink ratio was defined as the ratio of flag leaf area to the number of spikelets on the corresponding panicle, and five genotypes differing in this ratio were grown in a controlled greenhouse. Differential CO2 resources were applied either during the 2 weeks following heading (EXP1) or during the whole growth cycle (EXP2). Under e-CO2 , low source-sink ratio cultivars (LSS) had greater gains in photosynthesis, and they accumulated less nonstructural carbohydrate in the flag leaf than high source-sink ratio cultivars (HSS). In EXP2, grain yield and biomass gain was also greater in LSS probably caused by their strong sink. Photosynthetic capacity response to e-CO2 was negatively correlated across genotypes with local C source-sink ratio, a trait highly conserved across environments. HSS were sink-limited under e-CO2 , probably associated with low triose phosphate utilization (TPU) capacity. We suggest that the local C source-sink ratio is a potential target for selecting more CO2 -responsive cultivars, pending validation for a broader genotypic spectrum and for field conditions.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Variação Genética , Oryza/crescimento & desenvolvimento , Fotossíntese/genética , Análise de Variância , Biomassa , Carboidratos/química , Sequestro de Carbono/efeitos dos fármacos , Genótipo , Oryza/efeitos dos fármacos , Oryza/genética , Fotossíntese/efeitos dos fármacos
5.
J Exp Bot ; 70(20): 5773-5785, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31269202

RESUMO

This study aimed to understand the physiological basis of rice photosynthetic response to C source-sink imbalances, focusing on the dynamics of the photosynthetic parameter triose phosphate utilization (TPU). Here, rice (Oriza sativa L.) indica cultivar IR64 were grown in controlled environment chambers under current ambient CO2 concentration until heading, and thereafter two CO2 treatments (400 and 800 µmol mol-1) were compared in the presence and absence of a panicle-pruning treatment modifying the C sink. At 2 weeks after heading, photosynthetic parameters derived from CO2 response curves, and non-structural carbohydrate content of flag leaf and internodes were measured three to four times of day. Spikelet number per panicle and flag leaf area on the main culm were recorded. Net C assimilation and TPU decreased progressively after midday in panicle-pruned plants, especially under 800 µmol mol-1 CO2. This TPU reduction was explained by sucrose accumulation in the flag leaf resulting from the sink limitation. Taking together, our findings suggest that TPU is involved in the regulation of photosynthesis in rice under elevated CO2 conditions, and that sink limitation effects should be considered in crop models.


Assuntos
Oryza/metabolismo , Trioses/metabolismo , Dióxido de Carbono/metabolismo , Mudança Climática , Fotossíntese/fisiologia , Sacarose/metabolismo
6.
Ann Bot ; 124(4): 675-690, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30953443

RESUMO

BACKGROUND AND AIMS: Plant modelling can efficiently support ideotype conception, particularly in multi-criteria selection contexts. This is the case for biomass sorghum, implying the need to consider traits related to biomass production and quality. This study evaluated three modelling approaches for their ability to predict tiller growth, mortality and their impact, together with other morphological and physiological traits, on biomass sorghum ideotype prediction. METHODS: Three Ecomeristem model versions were compared to evaluate whether tillering cessation and mortality were source (access to light) or sink (age-based hierarchical access to C supply) driven. They were tested using a field data set considering two biomass sorghum genotypes at two planting densities. An additional data set comparing eight genotypes was used to validate the best approach for its ability to predict the genotypic and environmental control of biomass production. A sensitivity analysis was performed to explore the impact of key genotypic parameters and define optimal parameter combinations depending on planting density and targeted production (sugar and fibre). KEY RESULTS: The sink-driven control of tillering cessation and mortality was the most accurate, and represented the phenotypic variability of studied sorghum genotypes in terms of biomass production and partitioning between structural and non-structural carbohydrates. Model sensitivity analysis revealed that light conversion efficiency and stem diameter are key traits to target for improving sorghum biomass within existing genetic diversity. Tillering contribution to biomass production appeared highly genotype and environment dependent, making it a challenging trait for designing ideotypes. CONCLUSIONS: By modelling tiller growth and mortality as sink-driven processes, Ecomeristem could predict and explore the genotypic and environmental variability of biomass sorghum production. Its application to larger sorghum genetic diversity considering water deficit regulations and its coupling to a genetic model will make it a powerful tool to assist ideotyping for current and future climatic scenario.


Assuntos
Sorghum , Biomassa , Grão Comestível , Genótipo , Fenótipo
7.
Plant Cell Environ ; 42(5): 1532-1544, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620079

RESUMO

Soil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought-tolerant genotypes. In this study on tropical japonica and aus diversity panels (170-220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled. Association mapping indicated colocation of genomic regions for leaf rolling score and ΔNDVI under drought with previously reported leaf rolling genes and gene networks related to leaf anatomy. The relatively subtle variation across these large diversity panels may explain the lack of agreement of this study with earlier reports that used small numbers of genotypes that were highly divergent in hydraulic traits driving leaf rolling differences. This study highlights the large range of physiological responses to drought among rice genotypes and emphasizes that drought response processes should be understood in detail before incorporating them into a varietal selection programme.


Assuntos
Desidratação/genética , Oryza , Folhas de Planta/anatomia & histologia , Água/fisiologia , Secas , Variação Genética , Genótipo , Técnicas de Genotipagem , Oryza/genética , Oryza/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
8.
Front Plant Sci ; 8: 1516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919904

RESUMO

Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2-4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations.

9.
Rice (N Y) ; 9(1): 28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27255512

RESUMO

BACKGROUND: Panicle architectural traits in rice (branching, rachis length, spikelet number) are established between panicle initiation and heading stages. They vary among genotypes and are prone to Genotype x Environment interactions. Together with panicle number, panicle architecture determines sink-based yield potential. Numerous studies analyzed genetic and environmental variation of plant morphology, but the plasticity of panicle structure is less well understood. This study addressed the response of rice panicle size and structure to limited light availability at plant level for near-isogenic lines (NILs) with IR64 or IRRI146 backgrounds, carrying the QTL qTSN4 (syn. SPIKE) for large panicles. Full light and shading in the greenhouse and two population densities in the field were implemented. The image analysis tool P-TRAP was used to analyze the architecture of detached panicles. RESULTS: The qTSN4 increased total branch length, branching frequency and spikelet number per panicle in IRRI146 background in the field and greenhouse, and in IR64 background in the greenhouse, but not for IR64 in the field. In the field, however, qTSN4 reduced panicle number, neutralizing any potential yield gains from panicle size. Shading during panicle development reduced spikelet and branch number but qTSN4 mitigated partly this effect. Spikelet number over total branch length (spikelet density) was a stable allometry across genotypes and treatments with variation in spikelet number mainly due to the frequency of secondary branches. Spikelet number on the main tiller was correlated with stem growth rate during panicle development, indicating that effects on panicle size seemed related to resources available per tiller. CONCLUSIONS: The qTSN4 effects on panicle spikelet number appear as indirect and induced by upstream effects on pre-floral assimilate resources at tiller level, as they were (1) prone to G x E interactions, (2) non-specific with respect to panicle architectural traits, and (3) associated with pre-floral stem growth rate.

10.
Front Plant Sci ; 7: 623, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242827

RESUMO

Increasing rice yield potential is essential to secure world food supply. The quantitative trait locus qTSN4 was reported to achieve yield increases by enhancing both source and sink capacity. Three greenhouse experiments and one field experiment in the Philippines were conducted to study near-isogenic lines (NILs) in two genetic backgrounds, subjected to treatments with restricted light resources through shading (greenhouse) or population density (field and greenhouse). A consistent promotion of flag leaf width, leaf area and panicle size in terms of spikelet number was observed in the presence of qTSN4, regardless of environment. However, grain production per plant was enhanced only in one greenhouse experiment. An in-depth study demonstrated that increased flag leaf size in the presence of qTSN4 was associated with increased photosynthetic rates, along with lower SLA and greater N content per leaf weight and per area. This was emphasized under low light situation as the qTSN4-NILs did not express shade acclimation traits in contrast with the recipient varieties. The authors conclude that qTSN4 is a promising subject for further physiological studies, particularly under limited radiation. However, the QTL alone may not be a reliable source of increased yield potential because its effects at the plant and population scale are prone to genotype × environment interactions and the increased panicle size is compensated by the adaptive plasticity of other morphological traits.

11.
Front Plant Sci ; 6: 1197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779230

RESUMO

The qTSN4 was identified as rice QTL (Quantitative Traits Locus) increasing total spikelet number per panicle and flag leaf area but potentially reducing panicle number depending on the environment. So far, this trade-off was mainly observed at grain maturity and not specifically studied in details, limiting the apprehension of the agronomic interest of qTSN4. This study aimed to understand the effect of qTSN4 and of the environment on panicle sizing, its trade-off with panicle number, and finally plant grain production. It compared two high yielding genotypes to their Near Isogenic Lines (NIL) carrying either QTL qTSN4 or qTSN12, two distinct QTLs contributing to the enlarged panicle size, thereafter designated as qTSN. Traits describing C sink (organ appearance rate, size, biomass) and source (leaf area, photosynthesis, sugar availability) were dynamically characterized along plant and/or panicle development within two trials (greenhouse, field), each comparing two treatments contrasting for plant access to light (with or without shading, high or low planting densities). The positive effect of qTSN on panicle size and flag leaf area of the main tiller was confirmed. More precisely, it could be shown that qTSN increased leaf area and internode cross-section, and in some cases of the photosynthetic rate and starch reserves, of the top 3-4 phytomers of the main tiller. This was accompanied by an earlier tillering cessation, that coincided with the initiation of these phytomers, and an enhanced panicle size on the main tiller. Plant leaf area at flowering was not affected by qTSN but fertile tiller number was reduced to an extent that depended on the environment. Accordingly, plant grain production was enhanced by qTSN only under shading in the greenhouse experiment, where panicle number was not affected and photosynthesis and starch storage in internodes was enhanced. The effect of qTSN on rice phenotype was thus expressed before panicle initiation (PI). Whether early tillering reduction or organ oversizing at meristem level is affected first cannot be entirely unraveled. Further studies are needed to better understand any signal involved in this early regulation and the qTSN × Environment interactions underlying its agronomic interest.

12.
Front Plant Sci ; 4: 437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204372

RESUMO

The ability to assimilate C and allocate non-structural carbohydrates (NSCs) to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm) were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyze such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

13.
Funct Plant Biol ; 40(4): 342-354, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-32481112

RESUMO

Grain and sweet sorghum (Sorghum bicolor (L.) Moench) differ in their ability to produce either high grain yield or high sugar concentration in the stems. Some cultivars of sorghum may yield both grains and sugar. This paper investigates the trade-offs among biomass, grain and sugar production. Fourteen tropical sorghum genotypes with contrasted sweetness and PP sensitivity were evaluated in the field near Bamako (Mali) at three sowing dates under favourable rainfed conditions. Plant phenology, morphology, dry matter of different organs and stem sugar content were measured at anthesis and grain maturity. A panicle pruning treatment was implemented after anthesis. Late sowing (shorter days) led to a decrease in total leaf number, dry mass and sugar yield even in PP-insensitive genotypes because of an increased phyllochron. Dry matter production and soluble sugar accumulation were strongly correlated with leaf number. Sugar concentration varied little among sowing dates or between anthesis and maturity. This indicates that sugar accumulation happened mainly before anthesis, thus largely escaping from competition with grain filling. This was confirmed by the low impact of panicle pruning on sugar concentration. Changes in sugar concentration from anthesis to maturity were negatively correlated with harvest index but not with grain yield. Physiological trade-offs among sugar, biomass and grain production under favourable rainfall are small in late-maturing and PP-sensitive sweet sorghums cultivated under sudano-sahelian conditions. The results differ from earlier reports that focussed on early maturing, PP-insensitive germplasm. Further research is needed on the interactions of these traits with agricultural practices and drought.

14.
Funct Plant Biol ; 40(4): 355-368, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-32481113

RESUMO

Sugar accumulation in sorghum (Sorghum bicolor (L.) Moench) stems is a complex trait that is particularly plastic in response to photoperiod. This study investigated sucrose accumulation in a sterile (no grain filling) and fertile near-isogenic line of the photoperiod-sensitive cultivar IS2848 in two greenhouse experiments. Variable phenology was induced by applying a short (12-h PP) and a long (13-h PP) photoperiod. Dynamics of plant growth, phenology, sugar accumulation and related enzyme activities in internodes were investigated. Under 13-h PP, plants flowered 28 days later and attained threefold higher sucrose concentration at anthesis compared with those under 12-h PP. Sucrose accumulation in individual internodes was driven by organ physiological age, not by plant phenology. Competition with grain filling was marginal but greater under 12-h PP (i.e. when sucrose accumulation in internodes occurred after flowering). Enzyme activities showed marked developmental patterns but contributed little to explaining differences between treatments and genotypes. The study demonstrates that sucrose storage physiology in sweet sorghum resembles that of sugarcane (Saccharum spp.) but is more complex due to photoperiod effects on phenology. It confirms the field results on 14 sorghum genotypes contrasting for phenology and photoperiod sensitivity presented in a companion paper. Perspectives for developing sorghum ideotype concepts for food and fuel crops are discussed.

15.
Funct Plant Biol ; 40(6): 582-594, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32481132

RESUMO

Selection for early vigour can improve rice (Oryza sativa L.) seedlings' access to resources, weed competitiveness and yield. Little is known about the relationships between early vigour and drought tolerance. This study explored a panel of 176 rice genotypes in a controlled environment regarding a diversity of traits and trait combinations related to early vigour and water use under drought. The design excluded genotypic differences for root depth. We hypothesised that early vigour (as determined by biomass accumulation under well-watered conditions) was not independent from drought tolerance (determined by biomass accumulation maintenance under drought). Leaf size, developmental rate (DR) and tiller number contributed positively to shoot DW and leaf area, and thus vigour. Early vigour was negatively correlated with growth maintenance and water use efficiency under drought, suggesting tradeoffs. Three clusters of genotypes were identified based on the constitutive traits DR, specific leaf area, tiller number and leaf size. The less drought-tolerant cluster, mainly with lowland O. sativa indica rices, showed a sensitive transpiration response to the fraction of transpirable soil water; however, under well-watered conditions these genotypes were vigorous, with small leaves, high DR and high tillering. This experiment showed that the tradeoff between early vigour and drought tolerance was physiological and not a matter of access to water. The results are discussed with a view to identify drought adaptation strategies for crop improvement. Further improvement of multitrait phenotyping approaches is proposed.

16.
Rice (N Y) ; 5(1): 22, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24279832

RESUMO

BACKGROUND: Early vigour (biomass accumulation) is a useful but complex trait in rainfed rice (Oryza sativa L). Little is known on trade-offs with drought tolerance. This study explored the relevance of (sugar) metabolic and morphogenetic traits to describe the genetic diversity of rice early vigour and its phenotypic plasticity under drought conditions. A greenhouse experiment was conducted to characterize on a panel of 43 rice genotypes plant morphogenesis and sugar concentration in expanded (source) and expanding (sink) leaves. RESULTS: Across genotypes in control treatment, leaf starch concentration was negatively correlated with organogenetic development rate (DR, defined as leaf appearance rate on main stem). Genotypes with small leaves had high DR and tiller number but low leaf starch concentration. Under drought, vigorous genotypes showed stronger growth reduction. Starch concentration decreased in source leaves, by contrast with soluble sugars and with that observed in sink leaves. Accordingly, genotypes were grouped in three clusters differing in constitutive vigour, starch storage and growth maintenance under drought showing a trade off between constitutive vigour and drought tolerance. CONCLUSIONS: It was therefore suggested that non structural carbohydrates, particularly starch, were relevant markers of early vigour. Their relevance as markers of growth maintenance under drought needs to be further explored. Results are discussed regarding novel process based traits to be introduced in the GRiSP (Global Rice Science Partnership) phenotyping network.

17.
Ann Bot ; 106(1): 69-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430784

RESUMO

BACKGROUND AND AIMS: Genotypic variation in tillering can be caused by differences in the carbon supply-demand balance within a plant. The aim of this study was to understand and quantify the effects of genotype on tillering as a consequence of the underlying internal competition for carbohydrates. METHODS: Five sorghum hybrids, derived from inbred lines with a common genetic background and with similar phenology and plant height but contrasting tillering, were grown in five experiments. The experiments covered a wide range in radiation and temperature conditions, so that number of tillers produced varied significantly. Data on leaf area, tiller number, and biomass accumulation and partitioning were collected at regular intervals. To quantify internal plant competition for carbohydrates, a carbohydrate supply-demand index (S/D(index)) was developed and related to variation in tillering. KEY RESULTS: The appearance of main shoot leaves and tillers was highly co-ordinated across genotypes. High-tillering hybrids had a greater appearance frequency of early tiller ranks than low-tillering hybrids, and this was associated with narrower and hence smaller main shoot leaves. A generalized S/D(index) of internal plant competition accounted for most of the observed variation in maximum tiller number (N(tiller,max)) across genotypes. However, genotypic differences in the relationship between the S/D(index) and N(tiller,max) suggested that high-tillering hybrids also had a lower S/D threshold at which tillers appeared, possibly associated with hormonal effects. CONCLUSIONS: The results support the hypothesis that genotypic differences in tillering were associated with differences in plant carbon S/D balance, associated with differences in leaf size and in the threshold at which tillers grow out. The results provide avenues for phenotyping of mapping populations to identify genomic regions regulating tillering. Incorporating the results in crop growth simulation models could provide insight into the complex genotype-by-management-by-environment interactions associated with drought adaptation.


Assuntos
Sorghum/crescimento & desenvolvimento , Sorghum/genética , Genótipo , Modelos Teóricos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
18.
Ann Bot ; 106(1): 57-67, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20421230

RESUMO

BACKGROUND AND AIMS: Tillering has a significant effect on canopy development and, hence, on resource capture, crop growth and grain yield in sorghum. However, the physiological basis of tillering and its regulation by environmental effects are not fully understood. The objective of this study was to understand and quantify the environmental effects on tillering in sorghum using a carbohydrate supply-demand framework. METHODS: A series of five experiments with a wide range of radiation and temperature conditions was conducted and details of the tillering responses of a single representative hybrid were monitored. The concept of internal plant competition for carbohydrate was developed for analysis of these responses. KEY RESULTS: Tiller appearance was highly synchronized with main shoot leaf appearance, with a consistent hierarchy for tillering across environments. The main environmental effect was on the frequency of tiller appearance, in particular of the lower-rank tillers. This explained some of the observed environmental differences in the onset of tillering. A generalized index of internal plant competition, which took account of plant assimilate supply and demand (S/D(index)) during the critical period for tillering, explained most of the variation in maximum tiller number observed across the five experiments. CONCLUSIONS: This result was consistent with the hypothesis that internal plant competition for assimilates regulates tillering in sorghum. Hence, the framework outlined has a predictive value that could provide the basis for dynamic simulation of tillering in crop growth models.


Assuntos
Sorghum/crescimento & desenvolvimento , Modelos Teóricos , Folhas de Planta/crescimento & desenvolvimento , Temperatura
19.
Ann Bot ; 101(8): 1153-66, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18184646

RESUMO

BACKGROUND AND AIMS: Cotton shows a marked plasticity vs. density in terms of branch development and geometry, internode elongation and leaf expansion. This paper proposes interpretations for observed plasticity in terms of light quantity and quality. METHODS: 3-D virtual plants were reconstructed from field observations and 3-D digitization and were used to simulate the light regime in cotton stands of different densities. KEY RESULTS: All densities showed the same linear relationship between LAI and the sum of light intercepted by the canopy, from seedling emergence up to flowering. Simulated R : FR ratio profiles can very likely explain (1) the longer first internodes on main stem and branches and (2) the azimuthal re-orientation of branches toward the inter-row. CONCLUSIONS: Simulation tools were used to analyse plant plasticity in terms of light quantity and quality. The methodology applied here at the stand scale will now be continued at the plant scale to further strengthen the above hypotheses.


Assuntos
Gossypium/crescimento & desenvolvimento , Luz , Simulação por Computador , Gossypium/anatomia & histologia , Imageamento Tridimensional/métodos , Morfogênese/efeitos da radiação
20.
Ann Bot ; 99(1): 61-73, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17158141

RESUMO

BACKGROUND AND AIMS: It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional-structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. METHODS: Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. KEY RESULTS AND CONCLUSIONS: The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses.


Assuntos
Fenótipo , Zea mays/crescimento & desenvolvimento , Agricultura , Variação Genética , Modelos Biológicos , Estações do Ano , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA