Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Transplant Cell Ther ; 30(6): 582.e1-582.e10, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548226

RESUMO

KYV-101 is an autologous anti-CD19 chimeric antigen receptor (CAR)-T cell therapy under investigation for patients with B-cell driven autoimmune diseases. Hu19-CD828Z is a fully human anti-CD19 CAR designed and demonstrated to have a favorable clinical safety profile. Since anti-CD19 CAR T cells target and kill B cells in both circulation and tissues, the treatment with Hu19-CD828Z CAR T cells offers great potential in depleting autoreactive B cells. Demonstrate that Hu19-CD828Z CAR T cells manufactured from cryopreserved leukaphereses from patients with systemic lupus erythematosus (SLE) exhibit CAR-mediated and CD19-dependent cytokine release, proliferation and cytotoxicity when co-cultured with autologous primary B cells. T cells were enriched from cryopreserved leukaphereses from SLE patients or healthy donors (HD). CAR T cells were generated by transducing these cells with a lentiviral vector encoding Hu19-CD828Z. CAR-mediated and CD19-dependent activity was monitored in vitro in a set of cytotoxicity, cytokine release, and proliferation studies, in response to autologous primary CD19+ B cells, a CD19+ cell line (NALM-6), or a CD19- cell line (U937). Hu19-CD828Z CAR T cells produced from SLE patients or HD induced greater proliferation and dose-dependent cytotoxicity against both autologous primary B cells and the CD19+ NALM-6 cells than nontransduced control T cells or co-cultures with a CD19- cell line. Interestingly, there was lower inflammatory cytokine production from SLE patient-derived CAR T cells compared to HD donor-derived CAR T cells with either CD19+ cells or primary B cells. Hu19-CD828Z CAR T cells generated from SLE patient lymphocytes demonstrate CAR-mediated and CD19-dependent activity against autologous primary B cells with reduced inflammatory cytokine production supporting KYV-101 as a novel potential therapy for the depletion of pathogenic B cells in SLE patients.


Assuntos
Antígenos CD19 , Citocinas , Imunoterapia Adotiva , Lúpus Eritematoso Sistêmico , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Antígenos CD19/imunologia , Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Citotoxicidade Imunológica , Proliferação de Células , Linfócitos B/imunologia , Técnicas de Cocultura
2.
Cell Death Dis ; 14(8): 561, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626037

RESUMO

Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.


Assuntos
Endorribonucleases , Neoplasias , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases , Apoptose , Morte Celular , Transporte Biológico , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico
3.
Eur J Immunol ; 51(10): 2478-2484, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34350584

RESUMO

Treatment with convalescent plasma has been shown to be safe in coronavirus disease in 2019 (COVID-19) infection, although efficacy reported in immunocompetent patients varies. Nevertheless, neutralizing antibodies are a key requisite in the fight against viral infections. Patients depleted of antibody-producing B cells, such as those treated with rituximab (anti-CD20) for hematological malignancies, lack a fundamental part of their adaptive immunity. Treatment with convalescent plasma appears to be of general benefit in this particularly vulnerable cohort. We analyzed clinical course and inflammation markers of three B-cell-depleted patients suffering from COVID-19 who were treated with convalescent plasma. In addition, we measured serum antibody levels as well as peripheral blood CD38/HLA-DR-positive T-cells ex vivo and CD137-positive T-cells after in vitro stimulation with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides in these patients. We observed that therapy with convalescent plasma was effective in all three patients and analysis of CD137-positive T-cells after stimulation with SARS-CoV-2 peptides showed an increase in peptide-specific T-cells after application of convalescent plasma. In conclusion, we here demonstrate efficacy of convalescent plasma therapy in three B-cell-depleted patients and present data that suggest that while application of convalescent plasma elevates systemic antibody levels only transiently, it may also boost specific T-cell responses.


Assuntos
Anticorpos Antivirais/sangue , Linfócitos B/imunologia , COVID-19/terapia , Linfócitos T/imunologia , Adolescente , Idoso , Anticorpos Neutralizantes/sangue , Linfócitos B/citologia , Humanos , Imunidade Celular/imunologia , Imunização Passiva/métodos , Contagem de Linfócitos , Depleção Linfocítica , Linfoma de Células B/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Rituximab/efeitos adversos , SARS-CoV-2/imunologia , Resultado do Tratamento , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Soroterapia para COVID-19
4.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34266882

RESUMO

BACKGROUND: Graft-versus-host-disease (GvHD) is a major problem in allogeneic stem cell transplantation. We previously described two types of endogenous human leukocyte antigen (HLA)-II restricted antigens depending on their behavior towards HLA-DM. While DM-resistant antigens are presented in the presence of HLA-DM, DM-sensitive antigens rely on the expression of HLA-DO-the natural inhibitor of HLA-DM. Since expression of HLA-DO is not upregulated by inflammatory cytokines, DM-sensitive antigens cannot be presented on non-hematopoietic tissues even under inflammatory conditions. Therefore, usage of CD4+ T cells directed against DM-sensitive antigens might allow induction of graft-versus-leukemia effect without GvHD. As DM-sensitivity is likely linked to low affinity peptides, it remains elusive whether DM-sensitive antigens are inferior in their immunogenicity. METHODS: We created an in vivo system using a DM-sensitive and a DM-resistant variant of the same antigen. First, we generated murine cell lines overexpressing either H2-M or H2-O (murine HLA-DM and HLA-DO) to assign the two model antigens ovalbumin (OVA) and DBY to their category. Further, we introduced mutations within the two T-cell epitopes and tested the effect on DM-sensitivity or DM-resistance. Furthermore, we vaccinated C57BL/6 mice with either variant of the epitope and measured expansion and reactivity of OVA-specific and DBY-specific CD4+ T cells. RESULTS: By testing T-cell recognition of OVA and DBY on a murine B-cell line overexpressing H2-M and H2-O, respectively, we showed that OVA leads to a stronger T-cell activation in the presence of H2-O demonstrating its DM-sensitivity. In contrast, the DBY epitope does not rely on H2-O for T-cell activation indicating DM-resistance. By introducing mutations within the T-cell epitopes we could generate one further DM-sensitive variant of OVA and two DM-resistant counterparts. Likewise, we designed DM-resistant and DM-sensitive variants of DBY. On vaccination of C57BL/6 mice with either epitope variant we measured comparable expansion and reactivity of OVA-specific and DBY-specific T-cells both in vivo and ex vivo. By generating T-cell lines and clones of healthy human donors we showed that DM-sensitive antigens are targeted by the natural T-cell repertoire. CONCLUSION: We successfully generated DM-sensitive and DM-resistant variants for two model antigens. Thereby, we demonstrated that DM-sensitive antigens are not inferior to their DM-resistant counterpart and are therefore interesting tools for immunotherapy after allogeneic stem cell transplantation.


Assuntos
Apresentação de Antígeno/imunologia , Proteínas de Ligação a DNA/metabolismo , Imunoterapia/métodos , Fatores de Transcrição/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos
5.
Leuk Lymphoma ; 62(11): 2679-2689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33999745

RESUMO

Molecular targets of tyrosine kinase inhibitors are not restricted to the B-cell compartment but also regulate functions in the tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases like protein kinase C (PKC)-ß is essential for the formation of a microenvironment supporting leukemic growth. Here we describe the effect of Idelalisib on the PKCß/NF-κB and Notch pathway in stromal cells upon contact to primary chronic lymphocytic leukemia cells (CLL). There is no Idelalisib-dependent regulation of the Notch expression in stromal cells, whereas Idelalisib induces PKCß expression and activates the canonical NF-κB pathway. Idelalisib deregulates important immune-modulatory proteins in activated stromal cells, which might provoke the patient's side effects. Additionally, we established a 3D-stroma/leukemia model, that can give us a more defined look into the communication between tumor and stromal cells than standard cell cultures. This opens up the possibility to improve therapies, especially in the context of minimal-residual disease.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Purinas/farmacologia , Quinazolinonas/farmacologia , Células Estromais , Microambiente Tumoral
6.
Eur J Immunol ; 51(6): 1436-1448, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33784417

RESUMO

COVID-19 is a life-threatening disease leading to bilateral pneumonia and respiratory failure. The underlying reasons why a smaller percentage of patients present with severe pulmonary symptoms whereas the majority is only mildly affected are to date not well understood. Comparing the immunological phenotype in healthy donors and patients with mild versus severe COVID-19 shows that in COVID-19 patients, NK-/B-cell activation and proliferation are enhanced independent of severity. As an important precondition for effective antibody responses, T-follicular helper cells and antibody secreting cells are increased both in patients with mild and severe SARS-CoV-2 infection. Beyond this, T cells in COVID-19 patients exhibit a stronger activation profile with differentiation toward effector cell phenotypes. Importantly, when looking at the rates of pulmonary complications in COVID-19 patients, the chemokine receptor CCR4 is higher expressed by both CD4 and CD8 T cells of patients with severe COVID-19. This raises the hypothesis that CCR4 upregulation on T cells in the pathogenesis of COVID-19 promotes stronger T-cell attraction to the lungs leading to increased immune activation with presumably higher pulmonary toxicity. Our study contributes significantly to the understanding of the immunological changes during COVID-19, as new therapeutic agents, preferentially targeting the immune system, are highly warranted.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Pulmão/imunologia , Ativação Linfocitária , Receptores CCR4/imunologia , SARS-CoV-2/imunologia , Regulação para Cima/imunologia , Adulto , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
7.
Stem Cells ; 39(6): 819-830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539629

RESUMO

Survival of chronic lymphocytic leukemia (CLL) cells critically depends on the support of an adapted and therefore appropriate tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases such as protein kinase C-ß (PKCß) or Lyn kinase are essential for the formation of a microenvironment supporting leukemic growth. Here, we describe the impact of PKCß on the glucose metabolism in bone marrow stromal cells (BMSC) upon CLL contact. BMSC get activated by CLL contact expressing stromal PKCß that diminishes mitochondrial stress and apoptosis in CLL cells by stimulating glucose uptake. In BMSC, the upregulation of PKCß results in increased mitochondrial depolarization and leads to a metabolic switch toward oxidative phosphorylation. In addition, PKCß-deficient BMSC regulates the expression of Hnf1 promoting stromal insulin signaling after CLL contact. Our data suggest that targeting PKCß and the glucose metabolism of the leukemic niche could be a potential therapeutic strategy to overcome stroma-mediated drug resistance.


Assuntos
Células da Medula Óssea/metabolismo , Glucose/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína Quinase C beta/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteína Quinase C beta/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/efeitos dos fármacos
8.
Nat Commun ; 9(1): 3839, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242258

RESUMO

The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-ß mediated degradation of ß-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises ß-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.


Assuntos
Células da Medula Óssea/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor Notch2/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Reprogramação Celular , Humanos , Camundongos , Receptor Cross-Talk , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA