Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38573589

RESUMO

Myocardial infarction (MI) and pulmonary artery hypertension (PAH) are two prevalent cardiovascular diseases. In both conditions, oxidative stress is associated with a worse prognosis. Pterostilbene (PTE), an antioxidant compound, has been studied as a possible therapy for cardiovascular diseases. This study aims to evaluate the effect of PTE on oxidative stress in the hearts of animals with myocardial infarction and in the lungs of animals with PAH. Male Wistar rats were used in both models. In the MI model, the experimental groups were sham, MI, and MI+PTE. In PAH model, the experimental groups were control, PAH, and PAH+PTE. Animals were exposed to MI through surgical ligation of the left coronary artery, or to PAH, by administration of monocrotaline (60 mg/kg). Seven days after undergoing cardiac injury, the MI+PTE animals were treated with PTE (100 mg/kg day) for 8 days. After this, the heart was collected for molecular analysis. The PAH+PTE animals were treated with PTE (100 mg/kg day) for 14 days, beginning 7 days after PAH induction. After this, the lungs were collected for biochemical evaluation. We found that PTE administration attenuated the decrease in ejection fraction and improved LV end-systolic volume in infarcted animals. In the PAH model, PTE improved pulmonary artery flow and decreased ROS levels in the lung. PTE administration promoted protective effects in terms of oxidative stress in two experimental models of cardiac diseases: MI and PAH. PTE also improved cardiac function in infarcted rats and pulmonary artery flow in animals with PAH.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38547510

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance, imposing overload on the right ventricle (RV) and imbalance of redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on right ventricle (RV) remodeling and redox homeostasis in monocrotaline-induced pulmonary arterial hypertension (PAH). Male Wistar rats were separated into four groups: control (CTR); control + sulforaphane (CTR + SFN); monocrotaline (MCT); monocrotaline + sulforaphane (MCT + SFN). PAH induction was implemented by a single dose of MCT (60 mg/kg i.p.). Treatment with SFN (2.5 mg/kg/day i.p.) started on the 7th day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiography, hemodynamic, and oxidative stress evaluation were performed. MCT group showed increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure (mPAP), and pulmonary vascular resistance (PVR), while exhibited a decrease in RV outflow tract AT/ET ratio, RV fractional shortening and tricuspid annular plane systolic excursion (TAPSE) compared to CTR (P<0.05). SFN-treated PAH attenuated detrimental changes in TPSE, mPAP, and PVR parameters. Catalase and GSH/GSSG ratio were diminished in MCT compared to CTR (P<0.05). SFN increased catalase and normalized GSH/GSSG ratio to control levels (P<0.05). Data express a benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.

3.
J Cardiovasc Pharmacol ; 79(3): 325-334, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35099167

RESUMO

ABSTRACT: Sulforaphane (SFN) is a natural exogenous antioxidant from cruciferous vegetables already shown to improve cardiac function in cardiovascular diseases. The aim of this study was to analyze the effect of SFN treatment on the cardiac function in 2 experimental models of heart disease, ischemia/reperfusion (I/R) and myocardial infarction (MI), and whether an improvement of the cardiac function could be associated with a modulation of calcium-handling proteins. The study was divided into 2 main experiments: experiment 1, ex vivo with the I/R model and experiment 2, in vivo with the MI model. In the I/R model, rats were divided into control and SFN (0.5 mg/kg/d intraperitoneally for 3 days) groups, and the hearts were submitted to global ischemia (20 minutes) followed by reperfusion (20 minutes) in a Langendorff apparatus. SFN did not change left ventricle systolic and diastolic pressures but increased the contractility and relaxation indexes after 20 minutes of reperfusion. These functional changes were accompanied by a decreased protein expression of ryanodine receptor (RyR) and increased expression of p-phospholamban/phospholamban ratio, without alteration in the sarco/endoplasmic calcium ATPase expression. In the MI model, rats were randomly divided into Sham, MI (MI induced by left coronary artery ligation), Sham + SFN (5 mg/kg/d intraperitoneally for 25 days), and MI + SFN groups. Although SFN did not affect cardiac function, it led to a decreased RyR protein expression and reactive oxygen species levels in the left ventricular of the MI + SFN group. These data indicate that SFN modulates calcium-handling proteins and, thus, cardiac inotropism/lusitropism especially when administered previously to an ischemic event.


Assuntos
Cálcio , Infarto do Miocárdio , Animais , Cálcio/metabolismo , Isotiocianatos , Modelos Teóricos , Infarto do Miocárdio/metabolismo , Ratos , Reperfusão , Sulfóxidos
4.
Eur J Pharmacol ; 891: 173699, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160936

RESUMO

The time-course of pulmonary arterial hypertension in the monocrotaline (MCT) model was investigated. Male rats were divided into two groups: MCT (received a 60 mg/kg i.p. injection) and control (received saline). The MCT and control groups were further divided into three cohorts, based on the follow-up interval: 1, 2, and 3 weeks. Right ventricle (RV) catheterization was performed and RV hypertrophy (RVH) was estimated. The lungs were used for biochemical, histological, molecular, and immunohistochemical analysis, while pulmonary artery rings were used for vascular reactivity. MCT promoted lung perivascular edema, inflammatory cells exudation, greater neutrophils and lymphocytes profile, and arteriolar wall thickness, compared to CTR group. Increases in pulmonary artery pressure and in RVH were observed in the MCT 2- and 3-week groups. The first week was marked by the presence of nitrosative stress (50% moderate and 33% accentuated staining by nitrotyrosine). These alterations lead to an adaptation of NO production by NO synthase activity after 2 weeks. Oxidative stress was evident in the third week, probably by an imbalance between endothelin-1 receptors, resulting in extracellular matrix remodeling, endothelial dysfunction, and RVH. Also, it was found a reduced pulmonary arterial vasodilatory response to acetylcholine after 2 (55%) and 3 (45%) weeks in MCT groups. The relevance of this study is precisely to show that nitrosative and oxidative stress predominate in distinct time windows of the disease progression.


Assuntos
Pulmão/metabolismo , Estresse Nitrosativo , Estresse Oxidativo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Animais , Pressão Arterial , Modelos Animais de Doenças , Progressão da Doença , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/fisiopatologia , Masculino , Monocrotalina , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Edema Pulmonar/etiologia , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatologia , Ratos Wistar , Receptor de Endotelina A/metabolismo , Fatores de Tempo , Remodelação Vascular , Vasodilatação
5.
Eur J Pharmacol ; 854: 159-166, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30991047

RESUMO

After acute myocardial infarction (AMI), reactive oxygen species and oxidative stress have important roles in the progression to heart failure. As a therapeutic alternative, thyroid hormones (TH) revealed cardioprotective effects after AMI, including decreasing oxidative stress. Carvedilol beta-blocker, already used in the clinical treatment of AMI, also mitigate cardiac pathological remodelling. This study assessed the effects of post-AMI carvedilol and TH co-administration on oxidative stress and cardiac function as well as whether those effects were synergistic. Male Wistar rats were divided into five groups: sham-operated (SHAM), infarcted (MI), infarcted + TH (MI + TH), infarcted + carvedilol (MI + C) and infarcted + C + TH (MI + C + TH). Two days post-surgery, the SHAM and MI groups received saline, and treated groups received their respective treatments by gavage for 12 days. The animals were submitted to echocardiographic evaluation, ventricular catheterization and euthanized for heart collection to perform oxidative stress analysis. Treated groups improved for ejection fraction compared to the MI group. Carvedilol decreased the positive chronotropic TH effects in the MI + C + TH group. The MI and MI + C groups had increased reactive oxygen species and reduced sulfhydryl levels. Carvedilol and TH co-administration showed synergic effects in the MI + C + TH group, reducing reactive oxygen species levels and improving GSH/GSSG ratio. Moreover, co-treatment attenuated NADPH oxidase activity in the MI group. Therefore, this study showed for the first time that carvedilol and TH co-administration may improve redox balance and cardiac function after AMI. Such co-administration could represent a therapeutic strategy capable of preventing cardiac dysfunction and redox unbalance after AMI.


Assuntos
Carvedilol/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Infarto do Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Animais , Antioxidantes/metabolismo , Sinergismo Farmacológico , Eletrocardiografia/efeitos dos fármacos , Dissulfeto de Glutationa/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tireotropina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA