Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 118(12): 6504-6513, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24695911

RESUMO

Annealing of C60 in hydrogen at temperatures above the stability limit of C-H bonds in C60H x (500-550 °C) is found to result in direct collapse of the cage structure, evaporation of light hydrocarbons, and formation of solid mixture composed of larger hydrocarbons and few-layered graphene sheets. Only a minor part of this mixture is soluble; this was analyzed using matrix-assisted laser desorption/ionization MS, Fourier transform infrared (FTIR), and nuclear magnetic resonance spectroscopy and found to be a rather complex mixture of hydrocarbon molecules composed of at least tens of different compounds. The sequence of most abundant peaks observed in MS, which corresponds to C2H2 mass difference, suggests a stepwise breakup of the fullerene cage into progressively smaller molecular fragments edge-terminated by hydrogen. A simple model of hydrogen-driven C60 unzipping is proposed to explain the observed sequence of fragmentation products. The insoluble part of the product mixture consists of large planar polycyclic aromatic hydrocarbons, as evidenced by FTIR and Raman spectroscopy, and some larger sheets composed of few-layered graphene, as observed by transmission electron microscopy. Hydrogen annealing of C60 thin films showed a thickness-dependent results with reaction products significantly different for the thinnest films compared to bulk powders. Hydrogen annealing of C60 films with the thickness below 10 nm was found to result in formation of nanosized islands with Raman spectra very similar to the spectra of coronene oligomers and conductivity typical for graphene.

3.
J Phys Chem Lett ; 3(7): 812-7, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26286402

RESUMO

It is demonstrated that solvent-saturated graphite oxide can be considered to be solid solvate, and two phases with distinctly different solvent composition are found near room temperature. Phase transitions between these two solvated phases were observed using synchrotron powder X-ray diffraction and DSC for methanol, ethanol, acetone, and dimethylformamide (DMF) solvents. Solvate A, formed at room temperature, undergoes a reversible phase transition into expanded Solvate L at temperatures slightly below ambient due to insertion of one monolayer of solvent molecules between the GO planes. The phase transition is reversible upon heating, whereas the low-temperature expanded phase L can be quenched to room temperature for ethanol and DMF solvates.

4.
ACS Nano ; 5(6): 5132-40, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21504190

RESUMO

Reaction of single-walled carbon nanotubes (SWNTs) with hydrogen gas was studied in a temperature interval of 400-550 °C and at hydrogen pressure of 50 bar. Hydrogenation of nanotubes was observed for samples treated at 400-450 °C with about 1/3 of carbon atoms forming covalent C-H bonds, whereas hydrogen treatment at higher temperatures (550 °C) occurs as an etching. Unzipping of some SWNTs into graphene nanoribbons is observed as a result of hydrogenation at 400-550 °C. Annealing in hydrogen gas at elevated conditions for prolonged periods of time (72 h) is demonstrated to result also in nanotube opening, purification of nanotubes from amorphous carbon, and removal of carbon coatings from Fe catalyst particles, which allows their complete elimination by acid treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA