Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 255: 114773, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003064

RESUMO

Lactation is a unique physiological process to produce and secrete milk. Deoxynivalenol (DON) exposure during lactation has been demonstrated to affect adversely the growth development of offspring. However, the effects and potential mechanism of DON on maternal mammary glands remain largely unknown. In this study, we found the length and area of mammary glands were significantly reduced after DON exposure on lactation day (LD) 7 and LD 21. RNA-seq analysis results showed that the differentially expressed genes (DEGs) were significantly enriched in acute inflammatory response and HIF-1 signaling pathway, which led to an increase of myeloperoxidase activity and inflammatory cytokines. Furthermore, lactational DON exposure increased blood-milk barrier permeability by reducing the expression of ZO-1 and Occludin, promoted cell apoptosis by upregulating the expression of Bax and cleaved Caspase-3 and downregulating the expression of Bcl-2 and PCNA. Additionally, lactational DON exposure significantly decreased serum concentration of prolactin, estrogen, and progesterone. All these alterations eventually resulted in a decrease of ß-casein expression on LD 7 and LD 21. In summary, our findings indicated that lactational exposure to DON caused lactation-related hormone disorder and mammary gland injury induced by inflammatory response and blood-milk barrier integrity impairment, ultimately resulting in lower production of ß-casein.


Assuntos
Leite , Tricotecenos , Feminino , Camundongos , Animais , Caseínas/metabolismo , Caseínas/farmacologia , Lactação , Tricotecenos/toxicidade
2.
Cells ; 12(4)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831340

RESUMO

Granulosa cells (GCs) are essential for follicular growth, oocyte maturation, and steroidogenesis in the ovaries. Interleukin (IL)-11 is known to play a crucial role in the decidualization of the uterus, however, the expression of the IL-11 system (IL-11, IL-11Rα, and gp130) in the bovine ovary and its exact role in GCs have not been extensively studied. In this study, we identified the IL-11 signaling receptor complex in the bovine ovary and investigated the regulatory effects and underlying mechanism of IL-11Rα on the proliferation and steroidogenesis of GCs. We observed that the IL-11 complex was highly expressed in the GCs of large follicles. IL-11Rα knockdown significantly inhibited GC proliferation by inducing cell cycle arrest at the G1 phase, along with a significant downregulation of proliferating cell nuclear antigen (PCNA) and Cyclin D1 (CCND1) protein, and induced GC apoptosis by significantly upregulating the ratio of BCL-2-associated X protein (BAX) and B-cell lymphoma-2 (BCL-2). In addition, IL-11Rα knockdown attenuated the Janus kinase (JAK) 1-signal transducer and activator of transcription 3 (STAT3) signaling, which is related to cell proliferation and apoptosis. Furthermore, the enzyme-linked immunosorbent assay (ELISA) indicated that IL-11Rα silencing decreased the basal and forskolin (FSK)-stimulated secretions of estradiol and progesterone in GC culture medium concomitantly with a remarkable decrease in cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and steroidogenic acute regulatory protein (StAR). We subsequently determined that this reduction in steroidogenesis was in parallel with the decrease in phosphorylations of protein kinase A (PKA) substrates, cAMP-response element binding protein (CREB), extracellular regulated protein kinase (ERK) 1/2, and p38 mitogen-activated protein kinase (MAPK). Taken together, these data indicate that the effects of IL-11/IL-11Rα on the proliferation and steroidogenesis in bovine GCs is mediated by the JAK1-STAT3, PKA-CREB, p38MAPK, and ERK1/2 signaling pathways. Our findings provide important insights into the local action of the IL-11 system in regulating ovarian function.


Assuntos
Células da Granulosa , Interleucina-11 , Feminino , Bovinos , Animais , Células da Granulosa/metabolismo , Progesterona/farmacologia , Proliferação de Células/fisiologia , Receptores de Interleucina-11/metabolismo
3.
Ecotoxicol Environ Saf ; 237: 113504, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447471

RESUMO

Deoxynivalenol (DON) is one of the most common feed contaminants, and it poses a serious threat to the health of dairy cows. The existing studies of biological toxicity of DON mainly focus on the proliferation, oxidative stress, and inflammation in bovine mammary epithelial cells, while its toxicity on the biosynthesis of milk components has not been well documented. Hence, we investigated the toxic effects and the underlying mechanism of DON on the bovine mammary alveolar cells (MAC-T). Our results showed that exposure to various concentrations of DON significantly inhibited cell proliferation, induced apoptosis, and altered the cell morphology which was manifested by cell distortion and shrinkage. Moreover, the transepithelial electrical resistance (TEER) values of MAC-T cells exposed to DON were gradually decreased in a time- and concentration- dependent manner, but lactate dehydrogenase (LDH) leakage was significantly increased with the maximum increase of 2.4-fold, indicating the cell membrane and tight junctions were damaged by DON. Importantly, DON significantly reduced the synthesis of ß-casein and lipid droplets, along with the significantly decreases of phospho-mTOR, phospho-4EBP1, phospho-JAK2, and phospho-STAT5. Gene expression profiles showed that the expressions of several genes related to lipid synthesis and metabolism were changed, including acyl-CoA synthetase short-chain family member 2 (ACSS2), fatty acid binding protein 3 (FABP3), 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1), and insulin-induced gene 1 (INSIG1). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in ribosome, glutathione metabolism, and lipid biosynthetic process, which play important roles in the toxicological process induced by DON. Taken together, DON affects the proliferation and functional differentiation of MAC-T cells, which might be related to the cell junction disruption and morphological alteration. Our data provide new insights into functional differentiation and transcriptomic alterations of MAC-T cells after DON exposure, which contributes to a comprehensive understanding of DON-induced toxicity mechanism.


Assuntos
Leite , Junções Íntimas , Animais , Bovinos , Células Epiteliais , Feminino , Lipídeos , Junções Íntimas/metabolismo , Tricotecenos
4.
Front Vet Sci ; 8: 747619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820437

RESUMO

Inhibin (INH) and anti-Müllerian hormone (AMH) are essential in ovarian folliculogenesis and play an inhibitory role in mammalian fertility. However, the interactive effect of INH and AMH on the animal reproduction remains unknown. This study aimed to determine the possible interaction and synergy between INH and AMH in steroidogenesis by primary granulosa cells, and investigate their synergistic effect on fertility in mice. In in vitro granulosa cell culture system, we found that the treatment of either INHA or AMH had no significant effect on basal estradiol and progesterone production, whereas both significantly attenuated FSH-induced steroid hormone secretion. Importantly, combined treatment with INHA and AMH showed additive inhibitory effect on FSH-induced estradiol and progesterone production, accompanying a significant downregulation in the expression of FSH-stimulated CYP19A1, HSD3B, CYP11A1, StAR transcripts. The interrelationship of INH and AMH combinations was further investigated through active immune neutralization strategy. Female mice were immunized against INH and AMH eukaryotic expression plasmids, and the litter size was recorded after successfully mating. We observed that both INH and AMH plasmids were able to induce either anti-AMH or anti-INH antibodies in the immunized mice. In comparison with the control group, co-immunization with INH and AMH plasmids induced higher levels of estradiol, resulting in more litter size. Moreover, there was no significant difference on the offspring's weight between each group. Collectively, the results of the present study suggest that INH and AMH have synergistic effect in regulating steroidogenesis and the litter size in mice.

5.
Environ Sci Pollut Res Int ; 22(4): 2994-3003, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25226831

RESUMO

With an aim to select the most appropriate foaming surfactant for remediation of DDT-contaminated soil by foam-flushing technique, the performances of nonionic and anionic surfactant in several aspects were observed in this study. SDS had the best foam static characteristic among the four experimental surfactants. The solubilizing ability for DDT followed the order of Tween80 > TX100 > SDS > Brij35. The adsorption loss of SDS onto soil was the lowest. The order of desorption efficiency for DDT followed as TX-100 > Tween80 > Brij35 > SDS. Based on these experimental investigations, the overall performances of foaming surfactants were evaluated by data envelopment analysis method. The results indicated that SDS was the optimal alternative for remediation of DDT-contaminated soil by foam-flushing technique. This conclusion was reached with the consideration of the cost, foam static characteristic, surfactant adsorption loss, solubilizing ability, and desorption efficiency of surfactant for DDT.


Assuntos
DDT/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Tensoativos/farmacologia , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Polissorbatos/farmacologia , Dodecilsulfato de Sódio/farmacologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA