RESUMO
Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.
Assuntos
Diploide , Raízes de Plantas , Transdução de Sinais , Tetraploidia , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/genéticaRESUMO
BACKGROUND: Development of multiple rib fractures leading to bilateral flail chest in Cronkhite-Canada Syndrome (CCS) has not been reported. CASE PRESENTATION: A 59-year-old man presented with complaints of fatigue, chest pain, respiratory distress and orthopnea requiring ventilatory support to maintain oxygenation. CCS with bilateral anterior and posterior flail chest due to multiple rib fractures (2nd-10th on the right side and 2nd-11th on the left side). He underwent open reduction and anterior and posterior internal fixation using a titanium alloy fixator and a nickel-titanium memory alloy embracing fixator for chest wall reconstruction. He recovered gradually from the ventilator and showed improvement in his symptoms. He gained about 20 kg of weight in the follow up period (6 months after discharge from the hospital). CONCLUSION: CCS is a rare, complex disease that increases the risk of developing multiple rib fractures, which can be successfully treated with open reduction and internal fixation.
Assuntos
Tórax Fundido/cirurgia , Polipose Intestinal/cirurgia , Fraturas das Costelas/cirurgia , Fixação Interna de Fraturas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Níquel/química , Redução Aberta , Parede Torácica , Titânio/químicaRESUMO
BACKGROUND: Partial and full root-zone drought stresses are two widely used methods to induce soil drying in plant container-culture experiments. Two methods might lead to different observational results in plant water relation, such as non-hydraulic root-sourced signal (nHRS). We compared partial and full stress methods to induce nHRS in two diploids (MO1 and MO4) and two tetraploids (DM 22 and DM 31) wheat varieties under pot-culture conditions. Partial root-zone stress (PS) was performed using split-root alternative water supply method (one half wetting and the other drying) to induce the continuous operation of nHRS, and full root-zone stress (FS) was exposed to whole soil block to induce periodic operation of nHRS since jointing stage. RESULTS: We tested the two drought methods whether it influenced the nHRS mediated signalling and yield formation in primitive wheat species. Results showed that partial root-zone stress caused more increase in abscisic acid (ABA) production and decline in stomatal closure than full root-zone stress method. The incline in ABA was closely related to triggering reactive oxygen species (ROS) generation, and reducing cytokinin synthesis which, thereby, led to crosstalk with other signalling molecules. Furthermore, PS up-regulated the antioxidant defense system and proline content. Water use efficiency and harvest index was significantly increased in PS, suggesting that PS was more likely to simulate the occurrence of nHRS by increasing the adaptive strategies of plants and closer to natural status of soil drying than FS. CONCLUSION: These findings lead us to conclude that partial root-zone stress method is more feasible method to induce nHRS which has great capacity to reduce water consumption and enhance plant adaptation to constantly changing environment. These observations also suggest that different root-zone planting methods can be considered to improve the plant phenotypic plasticity and tolerance in water-limited rainfed environments.
RESUMO
MAIN CONCLUSION: Primitive wheat follows an opposite metabolic law from modern wheat with regard to leaf biomass/reproductive growth vs above-ground biomass that is under the regulation of non-hydraulic root signals and that influences resource acquisition and utilization. Non-hydraulic root signals (nHRS) are so far affirmed as a unique positive response to drying soil in wheat, and may imply huge differences in energy metabolism and source-sink relationships between primitive and modern wheat species. Using a pot-culture split-root technique to induce nHRS, four primitive wheat genotypes (two diploids and two tetraploids) and four modern wheat ones (released from different breeding decades) were compared to address the above issue. The nHRS was continuously induced in drying soil, ensuring the operation of energy metabolism under the influence of nHRS. We found that primitive wheat followed an opposite size-dependent allometric pattern (logy = αlogx + logß) in comparison with modern wheat. The relationships between ear biomass (y-axis) vs above-ground biomass (x-axis), and between reproductive biomass (y-axis) and vegetative (x-axis) biomass fell into a typical allometric pattern in primitive wheat (α > 1), and the nHRS significantly increased α (P < 0.01). However, in modern wheat, they turned to be in an isometric pattern (α ≈ 1). Regardless of nHRS, either leaf (i.e., metabolic rate) or stem biomass generally exhibited an isometric relationship with above-ground biomass in primitive wheat (α ≈ 1), while in modern wheat they fell into an allometric pattern (α > 1). Allometric scaling of specific leaf area (SLA) or biomass density showed superior capabilities of resource acquisition and utilization in modern wheat over primitive ones. We therefore proposed a generalized model to reveal how modern wheat possesses the pronounced population yield advantage over primitive wheat, and its implications on wheat domestication.
Assuntos
Transdução de Sinais , Triticum/fisiologia , Biomassa , Diploide , Domesticação , Secas , Genótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Reprodução , Solo/química , Triticum/genética , Triticum/crescimento & desenvolvimentoRESUMO
Non-hydraulic root-sourced signal (nHRS) is so far affirmed to be a unique positive early-warning response to drying soil, however its physiological and agronomic implications are still unclear. We designed two contrast methods to induce nHRS in two wheat (Triticum aestivum L.) genotypes released in different decades under pot-culture conditions. Partial root-zone stress (PS) was performed using the method of split-root alternative water supply (one half wetting and the other drying) to induce the continuous operation of nHRS, and full root-zone stress (FS) was subjected to whole root system to periodic operation of nHRS. nHRS-mediated signalling increased abscisic acid (ABA) production and triggered ROS (reactive oxygen species) generation, which, thereby, led to up-regulation of antioxidant defense system. Cytokinin synthesis reduced during drought stress while proline and malodialdehyde (MDA) content were increased. Regardless of drought treatment methods and wheat genotype, a significant decrease in grain yield, root biomass and above-ground biomass (pâ¯<â¯0.05) was observed, without significant changes in root-to-shoot ratio. Harvest index was increased, proposing that more energy was allocated to reproductive organs during the action of nHRS. Moreover, higher water use efficiency was witnessed in PS. The data suggest that nHRS triggered ABA accumulation, thereby closing stomata, and reducing water use and also decreases the production of ROS and improves the antioxidant defence enzymes, thus enhancing drought tolerance. This survey of different-decade genotypes suggests that advances in grain yield and drought tolerance would be made by targeted selection for a wheat genetic resource.
Assuntos
Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Triticum/fisiologia , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Desidratação , Estudos de Associação Genética , Genótipo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Prolina/metabolismo , Transdução de Sinais/fisiologia , Triticum/genética , Triticum/metabolismoRESUMO
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i)). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.