Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phytomedicine ; 130: 155756, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833791

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a persistent liver condition that affects both human health and animal productive efficiency on a global scale. A number of naturally occurring compounds activate nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor with important protective effects against many liver diseases, including NAFLD. Raffinose (Ra), an oligosaccharide extracted from several plants, exhibits diverse biological functions. However, the uncertainty lies in determining whether the activation of Nrf2 by Ra can provide a preventive effect on liver lipotoxicity. PURPOSE: The aim of this study was to shed light on the molecular pathways by which Ra possesses its protective benefits against NAFLD. METHODS: Experimental protocols were established using WT and Nrf2-null (Nrf2-/-) mice. Liver samples from each group were collected for Western blot, RT-qPCR, H & E, Sirius red and Oil red O staining. Additionally, serums were processed for ELISA. ALM12 cells were gathered for Western blot and immunofluorescence. Moreover, to elucidate the molecular mechanism of Ra, molecular docking was performed. RESULTS: Our results indicated that Ra remarkably alleviated liver lipotoxic in vivo and in vitro. Ra treatment effectively corrected hepatic steatosis, the release of AST, ALT, TG, and TC, as well as the depletion of HDL and LDL. Meanwhile, Ra efficiently prevented inflammation by inhibiting the TLR4-MyD88-NF-κB pathway and pyroptosis. Additionally, these findings implied that Ra reduced the production of fibrosis-related proteins, which enhanced collagen deposition. Molecular docking revealed that Ra possessed the ability to bind specific regions of Nrf2, resulting in the enhancement of Nrf2 activation and nuclear translocation. Ra treatment restored serum redox factors and antioxidant enzymes to normal levels; however, these alterations were clearly reversed in Nrf2-/- mice. CONCLUSION: This study reveals novel information on Ra's protective benefits against liver injury caused by abnormal lipid metabolism; these effects are mostly mediated by Nrf2 activation, suggesting a potential new medicine or treatment strategy for NAFLD.


Assuntos
Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Piroptose , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Piroptose/efeitos dos fármacos , Camundongos , Receptor 4 Toll-Like/metabolismo , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo
2.
J Physiol Biochem ; 80(2): 465-477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526704

RESUMO

Hypothermia is an essential environmental factor in gastrointestinal diseases, but the main molecular mechanisms of pathogenesis remain unclear. The current study sought to better understand how chronic cold stress affects gut damage and its underlying mechanisms. In this work, to establish chronic cold stress (CS)-induced intestinal injury model, mice were subjected to continuous cold exposure (4 °C) for 3 h per day for 3 weeks. Our results indicated that CS led to gut injury via inducing changes of heat shock proteins 70 (HSP70) and apoptosis-related (caspases-3, Bax and Bcl-2) proteins; enhancing expression of intestinal tight-related (ZO-1 and occludin) proteins; promoting releases of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), high mobility group box 1 (HMGB1), interleukin1ß (IL-1ß), IL-18 and IL-6 inflammatory mediators in the ileum; and altering gut microbial diversity. Furthermore, persistent cold exposure resulted in the cleavage of pyroptosis-related Gasdermin D (GSDMD) protein by regulating the NLRP3/ASC/caspase-1 and caspase-11 pathway, and activation of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which are strongly associated with changes in gut microbiota diversity. Taken together, these investigations provide new insights into the increased risk of intestinal disorders at extremely low temperatures and establish a theoretical foundation for the advancement of novel pharmaceutical interventions targeting cold-related ailments.


Assuntos
Gasderminas , Microbioma Gastrointestinal , Piroptose , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resposta ao Choque Frio , Proteínas de Ligação a Fosfato/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Inflamação/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
3.
J Agric Food Chem ; 72(5): 2741-2755, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284775

RESUMO

Aflatoxin B1 (AFB1) is one of the most harmful and toxic mycotoxins in foods and feeds, posing a serious health risk to both humans and animals, especially its hepatotoxicity. Nuclear factor-erythroid 2-related factor 2 (Nrf2), an important nuclear transcription factor, is generally recognized as a potential target for phytochemicals to ameliorate liver injury. The current study sought to elucidate the molecular processes by which licochalcone A (Lico A), a compound derived from Xinjiang licorice Glycyrrhiza inflate, protects against AFB1 toxicity. In vivo, male wild-type (WT) and Nrf2 knockout (Nrf2-/-) C57BL/6 mice were orally administered AFB1 at 1.5 mg/kg body weight (BW) with or without Lico A at 5 mg/kg. In vitro, AML12 cells were utilized to evaluate the protective effect and mechanism of Lico A against the AFB1-induced hepatotoxicity. Our findings demonstrated that AFB1 caused severe hepatotoxicity, while Lico A treatment successfully relieved the toxicity. Meanwhile, Lico A effectively improved liver injury, inflammatory mediators, oxidative insults, apoptosis, liver fibrosis, and pyroptosis, which contributed to the inhibition of toll receptor 4 (TLR4)-NF-κB/MAPK and NOD-like receptors protein 3 (NLRP3)/caspase-1/GSDMD signaling pathway activation. Furthermore, Lico A was able to enhance the Nrf2 antioxidant signaling pathway. Intriguingly, Lico A still had a protective effect on AFB1-caused liver injury in mice via the inhibition of inflammation and pyroptosis, while apoptosis and liver fibrosis were blocked in the absence of Nrf2. To sum up, the present study first elucidated that Lico A ameliorated AFB1-induced hepatotoxic effects and its main mechanism involved the inhibitory effects on oxidative stress, apoptosis, liver fibrosis, inflammation, and pyroptosis, which might be partially dependent on the regulation of Nrf2. The work may enrich the role and mechanism of Lico A's resistance to liver injury caused by various factors, and its application is promising.


Assuntos
Chalconas , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Humanos , Masculino , Animais , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Aflatoxina B1/toxicidade , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estresse Oxidativo , Inflamação/metabolismo , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cirrose Hepática/metabolismo
4.
Liver Int ; 44(2): 293-315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110988

RESUMO

O-GlcNAcylation is a dynamic, reversible and atypical O-glycosylation that regulates various cellular physiological processes via conformation, stabilisation, localisation, chaperone interaction or activity of target proteins. The O-GlcNAcylation cycle is precisely controlled by collaboration between O-GlcNAc transferase and O-GlcNAcase. Uridine-diphosphate-N-acetylglucosamine, the sole donor of O-GlcNAcylation produced by the hexosamine biosynthesis pathway, is controlled by the input of glucose, glutamine, acetyl coenzyme A and uridine triphosphate, making it a sensor of the fluctuation of molecules, making O-GlcNAcylation a pivotal nutrient sensor for the metabolism of carbohydrates, amino acids, lipids and nucleotides. O-GlcNAcylation, particularly prevalent in liver, is the core hub for controlling systemic glucose homeostasis due to its nutritional sensitivity and precise spatiotemporal regulation of insulin signal transduction. The pathology of various liver diseases has highlighted hepatic metabolic disorder and dysfunction, and abnormal O-GlcNAcylation also plays a specific pathological role in these processes. Therefore, this review describes the unique features of O-GlcNAcylation and its dynamic homeostasis maintenance. Additionally, it explains the underlying nutritional sensitivity of O-GlcNAcylation and discusses its mechanism of spatiotemporal modulation of insulin signal transduction and liver metabolic homeostasis during the fasting and feeding cycle. This review emphasises the pathophysiological implications of O-GlcNAcylation in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and hepatic fibrosis, and focuses on the adverse effects of hyper O-GlcNAcylation on liver cancer progression and metabolic reprogramming.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Humanos , Glicosilação , Processamento de Proteína Pós-Traducional , Insulina , Glucose
5.
J Vet Sci ; 24(1): e2, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36726274

RESUMO

BACKGROUND: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. OBJECTIVES: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. METHODS: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4°C) for three hours per day for three weeks. RESULTS: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1ß), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stress-involved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. CONCLUSIONS: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.


Assuntos
Doenças Cardiovasculares , Hipotermia , Animais , Camundongos , Doenças Cardiovasculares/veterinária , Proteínas de Ciclo Celular , Resposta ao Choque Frio , Hipotermia/veterinária , Inflamação/veterinária , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Piroptose/fisiologia
6.
Int Immunopharmacol ; 115: 109590, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577159

RESUMO

Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.


Assuntos
Lesão Pulmonar , Pneumonia , Camundongos , Animais , Piroptose , Estresse Oxidativo , Inflamação , Glutationa
7.
Biomolecules ; 12(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35883482

RESUMO

The body needs to generate heat to ensure basic life activities when exposed to cold temperatures. The liver, as the largest glycogen storage organ in the body and main heat-producing organ at rest, may play a role in chronic cold exposure. Recent studies suggested that pyroptosis plays a crucial role in liver diseases. However, the role of pyroptosis in cold stress-induced liver injury is not clear. Hence, in this study, we attempted to investigate the effects of chronic cold exposure on liver function, apoptosis, oxidative stress and inflammation in mice by establishing a mouse model of chronic cold exposure, and to investigate whether pyroptosis pathways are involved in the process of chronic cold exposure. In vivo, our results show that inflammatory cell infiltration and other pathological changes in liver cells and the activity of liver enzyme evidently increased in the serum and liver of cold-exposed mice, suggesting cold stress may result in liver injury. Remarkably, increased expression of heat shock protein 70 (HSP70) and HSP90 proteins proved the cold stress model is successfully constructed. Then, elevated levels of apoptosis, inflammation, oxidative stress and pyroptosis related proteins and mRNAs, such as cysteinyl aspartate specific proteinase-3 (Caspase-3), inducible nitric oxide synthase (iNOS), nuclear factor erythroid2-related factor 2 (Nrf2) and gasdermins D (GSDMD), confirmed that cold exposure activated apoptosis, oxidative stress and pyroptosis, and released inflammation cytokines. Meanwhile, in vitro, we got similar results as in vivo. Further, adding an NLR family pyrin domain containing 3 (NLRP3) inhibitors found that suppression expression of NLRP3 results in the essential proteins of pyroptosis and antioxidant evidently reduced, and adding GSDMD inhibitor found that suppression expression of GSDMD accompanies with the level of Nrf2 and heme oxygenase-1 (HO-1) obviously reduced. In summary, these findings provide a new understanding of the underlying mechanisms of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Piroptose , Animais , Caspase 1/metabolismo , Resposta ao Choque Frio , Inflamação , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transdução de Sinais
8.
Eur J Pharmacol ; 919: 174756, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032486

RESUMO

Thioredoxin-1 (Trx-1) is a small redox-active protein normally found in mammalian cells that responds to the changing redox environment by contributing electrons or regulating related proteins. There is growing evidence that Trx-1 has multiple functions, including cytoprotective, anti-apoptotic, antioxidant and anti-inflammatory effects. To date, researchers have found that Trx-1 deficiency leads to severe damage in various disease models, such as atherosclerosis, cerebral ischemia, diabetes and tumors. Conversely, activation of Trx-1 has a protective effect against these diseases. Accordingly, a variety of Trx-1 inducers have been widely used in the clinic with significant therapeutic value. In this paper, we summarize the pathogenesis of Trx-1 involvement in the above-mentioned diseases and describe the protective effects of Trx-1 inducers on them.


Assuntos
Antioxidantes/metabolismo , Doença da Artéria Coronariana/metabolismo , Tiorredoxinas/metabolismo , Humanos
9.
J Cell Physiol ; 237(2): 1341-1352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668190

RESUMO

Cold exposure is an unavoidable and severe challenge for people and animals residing in cold regions of the world, and may lead to hypothermia, drastic changes in systemic metabolism, and inhibition of protein synthesis. O-linked-N-acetylglucoseaminylation (O-GlcNAcylation) directly regulates the activity and function of target proteins involved in multiple biological processes by acting as a stress receptor and nutrient sensor. Therefore, our study aimed to examine whether O-GlcNAcylation affected myogenic IL-6 expression, regulation of energy metabolism, and promotion of survival in mouse skeletal muscle under acute cold exposure conditions. Total protein was extracted from C2C12 cells that had been cultured at 32°C for 3, 6, 9, and 12 h. Western blot analysis showed that mild hypothermia enhanced O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) expression. Furthermore, global OGT-dependent glycosylation and interleukin-6 (IL-6) levels peaked 3 h after induction of mild hypothermia. Enhanced activation of the NF-κB pathway was also observed in response to mild hypothermia. Alloxan and Thiamet G were used to reduce and increase global OGT glycosylation levels in C2C12 cells, respectively. Increased O-GlcNAcylation was associated with significant upregulation of IL-6 expression, as well as enhanced activity and nuclear translocation of p65, while decreased O-GlcNAcylation had the opposite effect. In addition, increased O-GlcNAcylation was associated with significantly increased glucose metabolism, and OGT-mediated O-GlcNAcylation of p65. We generated skeletal muscle-specific OGT knockout mice and exposed them to cold at 4°C for 3 h per day for 1 week. OGT deficiency attenuated the O-GlcNAcylation, activity, and nuclear translocation of p65, resulting in downregulation of IL-6 in mouse skeletal muscle of mice exposed to cold conditions. Taken together, our data suggested that O-GlcNAcylation of p65 enhanced p65 activity and nuclear translocation leading to the upregulation of IL-6, which maintained energy homeostasis and promotes cell survival in mouse skeletal muscle during cold exposure.


Assuntos
Hipotermia , Interleucina-6 , N-Acetilglucosaminiltransferases/metabolismo , Animais , Humanos , Interleucina-6/genética , Camundongos , Músculo Esquelético/metabolismo , N-Acetilglucosaminiltransferases/genética
10.
Front Mol Biosci ; 8: 685993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395524

RESUMO

The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. Cold-induced RNA-binding protein is a cold shock protein that is rapidly up-regulated under cold stimulation in contrast to the inhibition of most proteins and participates in multiple cellular physiological activities by regulating targets. Therefore, this study was carried out to investigate the possible mechanism of CIRP-mediated glucose metabolism regulation and survival promotion in skeletal muscle after acute cold exposure. Skeletal muscle and serum from mice were obtained after 0, 2, 4 and 8 h of acute hypothermia exposure. Subsequently, the changes of CIRP, metabolism and apoptosis were examined. Acute cold exposure increased energy consumption, enhanced glycolysis, increased apoptosis, and up-regulated CIRP and phosphorylation of AKT. In addition, CIRP overexpression in C2C12 mouse myoblasts at each time point under 37°C and 32°C mild hypothermia increased AKT phosphorylation, enhanced glucose metabolism, and reduced apoptosis. CIRP knockdown by siRNA interference significantly reduced the AKT phosphorylation of C2C12 cells. Wortmannin inhibited the AKT phosphorylation of skeletal muscle after acute cold exposure, thereby inhibiting glucose metabolism and aggravating apoptosis. Taken together, acute cold exposure up-regulates CIRP in mouse skeletal muscle, which regulates glucose metabolism and maintains energy balance in skeletal muscle cells through the AKT signaling pathway, thus slowing down the apoptosis of skeletal muscle cells.

11.
Arch Anim Breed ; 64(1): 231-243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159254

RESUMO

Newborn poultry in cold regions often suffer from cold stress, causing a series of changes in their physiology and metabolism, leading to slow growth and decreased production performance. However, a single anti-stress substance cannot completely or maximally eliminate or alleviate the various effects of cold stress on animals. Therefore, the effects of the supplemented glutamine and L-carnitine on broilers under low temperature were evaluated in this study. Broilers were randomly allocated into 16 groups which were respectively fed with different levels of glutamine and L-carnitine according to the L 16 (4 5 ) orthogonal experimental design for 3 weeks (the first week is the adaptive feeding period; the second and third weeks are the cold exposure period). Growth performance was recorded, and blood samples were collected during cold exposure. The results showed the supplementation had altered the plasma parameters, growth performance and cold-induced oxidative stress. The increase of corticosterone and suppression of thyroid hormone was ameliorated. Supplemented groups had lower daily feed intake and feed-to-gain ratio, higher daily weight gain and better relative weights of immune organs. Plasma glucose, total protein, blood urea nitrogen and alkaline phosphatase changed as well. Oxidative stress was mollified due to the improved activities of superoxide dismutase and glutathione peroxidase, heightened total antioxidant capacity and stable malondialdehyde. Dietary glutamine and L-carnitine improve the growth performance, nutritional status and cold stress response of broilers at low temperature, and their interaction occurred.

12.
J Cell Mol Med ; 25(16): 8015-8027, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155807

RESUMO

Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti-inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)-induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS-induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold-stimulated mice. PB2 reduced cold stimulation-induced inflammation by inhibiting TLR4/NF-κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf-2/Keap1, AMPK/GSK3ß signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co-treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS-induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.


Assuntos
Autofagia , Biflavonoides/farmacologia , Catequina/farmacologia , Temperatura Baixa , Proteínas Hedgehog/metabolismo , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proantocianidinas/farmacologia , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-34012471

RESUMO

As innate immune effector cells in the central nervous system (CNS), microglia not only are essential for the normal development of nervous system but also act on different neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and other neuroinflammatory diseases. Mogroside V (Mog), a natural plant active ingredient and isolated form of Momordica grosvenori, has been shown to possess anti-inflammatory action, but few studies were carried out to investigate the effects of Mog on neuroinflammation. This study aimed to investigate the role of Mog in lipopolysaccharide- (LPS-) induced neuroinflammation and neuronal damage, revealing the underlying mechanisms. Our data indicated that Mog significantly inhibited the LPS-induced production of proinflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-18, IL-6, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and high mobility group box 1 (HMGB1) in BV-2 cells. We found that Mog also suppressed toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), the phosphorylation of mitogen-activated protein kinases (MAPKs), adenosine 5'-monophosphate- (AMP-) activated protein kinase (AMPK), nuclear factor kappa-B (NF-κB), and protein kinase B (AKT). Moreover, Mog also enhanced the expression of γ-glutamyl cysteine synthetase catalytic subunit (GCLC), modifier subunit (GCLM), heme oxygenase-1 (HO-1), and quinine oxidoreductase 1 (NQO1) proteins, mostly depending on the nuclear translation of nuclear factor erythroid-2 related factor 2 (Nrf2). In contrast, pretreatment with inhibitors of AKT can suppress the phosphorylation of AMPK, Nrf2, and its downstream proteins expression. In summary, Mog might play a protective role against LPS-induced neurotoxicity by inhibiting the TLR4-MyD88 and activation of AMPK/AKT-Nrf2 signaling pathway.

14.
Cryobiology ; 100: 125-132, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651993

RESUMO

Cold stress is one of the serious factors restricting the development of animal husbandry in cold areas. Cold exposure can easily lead to cold stress, slow growth and even death of newborn animals. O-GlcNAcylation modification can act as type of "stress receptor" and"nutrition sensor" in a variety of stress responses, however, it is not clear how O-GlcNAcylation can regulate glucose metabolism in the liver of piglets under cold stress. In this study, piglets 21 days of age were exposed to 4 °C for 4 h or 8 h in a phytotron. Serum cortisol and other stress hormones were used to assess body status to establish a cold stress piglet model. The changes of glycogen in liver were detected by PAS. FDP and PA were also measured to study the glycolysis level of liver. To characterize potential mechanisms of O-GlcNAcylation on the livers of cold stress piglets, AKT, GSK3ß, GS, PFKFB2, AS160 and their corresponding phosphorylation were determined by Western blotting. Results show O-GlcNAcylation increased and apoptosis levels increased in the liver following cold exposure during excessive CORT or metabolic dysfunction. It is suggested that the acute cold exposure of piglets induced a sequential change in the level of O-GlcNAcylation, which may be one of the factors mediating liver cell apoptosis and glucose metabolism regulation by the O-GlcNAc/AKT pathway. These findings provide new insight into the mechanisms of the cold stress response, which can facilitate the development of new strategies to combat the effects of hypothermia.


Assuntos
Resposta ao Choque Frio , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose , Criopreservação/métodos , Glucose , Fígado , Suínos
16.
Food Funct ; 12(2): 696-705, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33410857

RESUMO

Aloin, a naturally occurring anthraquinone glycoside derived from the Aloe species, has antioxidant and anti-inflammatory activities, but its role in non-alcoholic steatohepatitis (NASH) remains unknown. This study was designed to investigate the anti-inflammatory, antioxidant, and anti-apoptotic effects of aloin and the underlying mechanisms during NASH. Wild-type or nuclear erythroid 2-related factor 2 (Nrf2) knock-out (KO) mice were fed a choline-deficient, l-amino acid-defined, high-fat (CDAAH) diet and treated with aloin (10, 20 or 40 mg per kg bw per day) by gavage for twelve weeks. Liver and blood samples were collected to evaluate liver function, protein abundance, and histopathological status. Supplementing aloin at 20 mg kg-1 was optimal for mitigating liver damage during NASH, as evidenced by reduced alanine transaminase and aspartate aminotransferase activity in serum. Supplementation with aloin significantly reduced serum concentration or liver protein abundance of malondialdehyde, tumor necrosis factor alpha, Interleukin (IL)-1ß and IL-6. Aloin treatment enhanced hepatic superoxide dismutase activity, glutathione and serum IL-10 levels in mice with NASH. Furthermore, supplementation with aloin inhibited hepatocyte apoptosis caused by Bcl-2 up-regulation and cleaved caspase-3 and Bax down-regulation. Mechanistically, by using Nrf2 KO mice, the protective effects of aloin were associated with enhanced antioxidant, anti-inflammatory and anti-apoptotic activity, all of which were mediated by Nrf2/heme oxygenase-1 (HO-1) signaling activation. Data suggested that aloin activates the Nrf2/HO-1 pathway and has protective potential against liver injury during NASH. Therefore, aloin supplementation might contribute to the prevention and treatment of NASH via activation of the Nrf2/HO-1 pathway.


Assuntos
Dieta/efeitos adversos , Emodina/análogos & derivados , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Aminoácidos/administração & dosagem , Animais , Apoptose , Biomarcadores/sangue , Deficiência de Colina , Gorduras na Dieta , Emodina/química , Emodina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Inflamação/genética , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
17.
Cell Stress Chaperones ; 26(2): 297-309, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159661

RESUMO

O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas/metabolismo , Estresse Fisiológico , Acilação , Homeostase , Humanos
18.
Food Funct ; 11(12): 10774-10785, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232417

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is closely associated with oxidative stress. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key transcription factor that regulates oxidative stress. Isoorientin (IOT), as a dietary C-glucosyl flavone derived from rooibos tea, cereals and legumes, is thought to possess multiple pharmacological activities; however, the protective effect of IOT against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells is still poorly understood. The present study focused on investigating whether IOT could ameliorate neurotoxicity and the underlying mechanisms. Our findings indicated that IOT significantly inhibited neurotoxicity reduced apoptotic cell numbers, reactive oxygen species (ROS) overproduction and mitochondrial membrane potential, and modulated the expression of apoptosis-related proteins, including Bcl-2, Bax and caspase-3, which were induced by 6-OHDA. Moreover, IOT also enhanced the expression of the GCLC, GCLM, HO-1, NQO1 and Trx-1 proteins, which mostly depends on the nuclear translation of Nrf2 and reduced expression of the Keap1 protein. IOT significantly increased the phosphorylation of AMPK, ERK, GSK3ß, JNK, PI3K and AKT. In contrast, pretreatment with the inhibitors of AMPK and PI3K/AKT only suppressed the nuclear translocation of Nrf2. In addition, the expression of these proteins was effectively decreased by 6-OHDA, and this effect was reversed by IOT treatment. Importantly, the effect of IOT on improving 6-OHDA induced neurotoxicity was remarkably abrogated by the application of Nrf2 siRNA and, AMPK and PI3K/AKT inhibitors. In summary, IOT might play a protective role against 6-OHDA-induced neurotoxicity by inducing the expression of various antioxidant enzymes via the activation of the AMPK/AKT-Nrf2 signalling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Luteolina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Oxidopamina/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
19.
Phytomedicine ; 71: 153241, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32454347

RESUMO

BACKGROUND: Oxidative stress-triggered fatal hepatotoxicity is an essential pathogenic factor in acute liver failure (ALF). AIMS: To investigate the protective effect of daphnetin (Daph) on tert-butyl hydroperoxide (t-BHP) and acetaminophen (APAP)-induced hepatotoxicity through altering Nrf2/Trx-1 pathway activation. MATERIALS AND METHODS: In vivo, male C57BL/6 mice with Wild-type (WT) and Nrf2-/- were divided into five groups and acute liver injury model were established by APAP or LPS/GalN after injection with Daph (20, 40, or 80 mg/kg), seperately. Then, liver tissue and serum were collected for biochemical determination, TUNEL and H & E staining, and western blot analysis. In vitro, HepG2 cells were used to investigate the protective effect and mechanism of daphnetin against ROS and apoptosis induced by t-BHP via apoptosis detection, western blot, immunofluorescence analysis, and sgRNA transfection. RESULTS: Our results indicated that Daph efficiently inhibited t-BHP-stimulated hepatotoxicity, and modulated Trx-1 expression and Nrf2 activation which decreased Keap1-overexpression in HepG2 cells. Moreover, Daph inhibited t-BHP-excited hepatotoxicity and enhanced Trx-1 expression, which was reversed in Nrf2-/- HepG2 cells. In vivo, a survival rate analysis first suggested that Daph significantly reduced the lethality induced by APAP or GalN/LPS in a Nrf2-dependent or -independent manner by using Nrf2-/- mice, respectively. Next, further results implicated that Daph not only effectively alleviated APAP-induced an increase of ALT and AST levels, histopathological changes, ROS overproduction, malondialdehyde (MDA) formation and GSH/GSSG reduction, but it also relieved hepatic apoptosis by strengthening the suppression of cleaved-caspase-3 and expression of P53 protein. Additionally, Daph attenuated mitochondrial dysfunction by suppressing ASK1/JNK activation and decreasing apoptosis-inducing factor (AIF) and Cytochrome c release and Bax mitochondrial translocation. Daph inhibited inflammatory responses by inactivating the thioredoxin-interacting protein (Txnip)/NLRP3 inflammasome. Furthermore, Daph efficiently enhanced Nrf2 nuclear translocation and Trx-1 expression. However, these effects in WT mice were eliminated in Nrf2-/- mice. CONCLUSIONS: These investigations demonstrated that Daph treatment has protective potential against oxidative stress-driven hepatotoxicity by inhibition of ASK1/JNK and Txnip/NLRP3 activation, which may be strongly related to the Nrf2/Trx-1 upregulation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Inflamassomos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Umbeliferonas/farmacologia , Acetaminofen/efeitos adversos , Animais , Proteínas de Transporte/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Hep G2 , Humanos , Inflamassomos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/fisiologia , Substâncias Protetoras/farmacologia
20.
Int Immunopharmacol ; 85: 106627, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32473572

RESUMO

Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Necrose Hepática Massiva/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Autofagia/efeitos dos fármacos , Álcoois Benzílicos/química , Álcoois Benzílicos/uso terapêutico , Citocinas/metabolismo , Galactosamina/toxicidade , Glucosídeos/química , Glucosídeos/uso terapêutico , Células Hep G2 , Humanos , Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Necrose Hepática Massiva/induzido quimicamente , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases/metabolismo , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA