Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 221: 106115, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460848

RESUMO

The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics. The function of differential bile acids on follicular granulosa cells was also studied. The results showed that the bile acids transporters were abundantly expressed in ovarian tissues, but the rate-limiting enzymes were not, which was consistent with the inability of cultured follicular cells to convert cholesterol into bile acids. Targeted metabolomics analysis revealed thirteen differential subspecies of bile acids between HF and AF. The free bile acids were significant down-regulated and their conjugated forms were significantly up-regulated in AF as compared to HF. Finally, cell biological validation found a specific differentially conjugated bile acid, glycodeoxycholic acid (GDCA), which could promote follicular granulosa cell apoptosis and reduce steroid hormone secretion. In summary, our studies suggest that bile acids in buffalo follicles are transported from the blood rather than being synthesized within the follicles. The conjugated bile acids such as GDCA, accumulate in buffalo follicles, and may accelerate atresia by promoting apoptosis of granulosa cells and inhibiting steroid hormone production. These results will provide new clues for studying the physiological role and mechanism of bile acids involved in buffalo follicular atresia.


Assuntos
Búfalos , Atresia Folicular , Animais , Apoptose/fisiologia , Ácidos e Sais Biliares , Estradiol/análise , Feminino , Ácido Glicodesoxicólico , Células da Granulosa , Metabolômica , Esteroides
2.
Front Genet ; 12: 632164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841499

RESUMO

Circular RNAs (circRNAs) are novel non-coding RNAs, which show abnormal expression in several diseases, such as atherosclerosis (AS). The purpose of the present study was to reveal the association between hsa_circ_0004543 and AS. In the present study, hsa_circ_0004543 was overexpressed in human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (oxLDL). Inhibition of hsa_circ_0004543 expression facilitated the proliferation, migration, and invasion of HUVECs and significantly reduced their apoptotic rate following treatment with oxLDL. Furthermore, silencing of hsa_circ_0004543 activated the PI3K/AKT/NOS3 pathway in oxLDL-induced HUVECs. Collectively, these results demonstrated that hsa_circ_0004543 may play a vital role in the development of AS and affect the proliferation of HUVECs, providing a potential target for treating endothelial cell damage in AS.

3.
Hum Mutat ; 41(8): 1383-1393, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32333458

RESUMO

Neural tube defects (NTDs) are severe congenital malformations caused by failed neural tube closure. Recently, autophagy is revealed to play a vital role in neuroepithelium development and neurulation. Autophagy and beclin 1 regulator 1 (Ambra1) is a crucial regulator of autophagy initiation, and its deficiency in mice leads to exencephaly and/or spina bifida. However, the genetic contribution of AMBRA1 to the etiology of human NTDs remains unknown. In this study, we identified five rare missense mutations of AMBRA1 in 352 NTDs cases, which were absent in 224 matched controls. Western blotting and fluorescence puncta counting for MAP1LC3A/LC3 in HEK293T cells suggested that four of the mutations (AMBRA1 p.Thr80Met, p.Leu274Phe, p.Ser743Phe, and p.Met884Val) affected autophagy initiation to various extents. Furthermore, these four mutations also displayed loss-of-function effects compared with wild-type AMBRA1 when we injected messenger RNA (mRNA) to overexpress or rescue ambra1a-morpholino oligos (MO) knockdown in zebrafish. It is intriguing that trehalose, a natural disaccharide, could rescue ambra1a-MO knockdown in a dose-dependent manner independently or together with AMBRA1 mRNA. Taken together, our findings suggest that rare mutations of the autophagy regulator gene AMBRA1 may contribute to the etiology of human neural tube defects, and trehalose is a promising treatment for a subset of NTDs caused by autophagy impairment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Defeitos do Tubo Neural/genética , Animais , Autofagia , Estudos de Casos e Controles , Pré-Escolar , China , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA