Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119913, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233030

RESUMO

This study investigates the enhancement of ozone adsorption on diverse TiO2 crystal interfaces through an innovative electrochemical modulation approach. The research focuses on the effects of applied electric field strength and reaction sites on ozone interfacial adsorption energies for Ti/Anatase TiO2 (0 0 1) and Ti/Rutile TiO2 (1 1 0) interfaces. The findings reveal that positive electric fields significantly enhance ozone adsorption on both interfaces, with adsorption energies increasing by up to 18% for Ti/Anatase TiO2 (0 0 1) and 15% for Ti/Rutile TiO2 (1 1 0). Notably, double water molecule sites (≡(H2O)2) play a crucial role in this enhancement process. The study demonstrates that the applied electric field alters the charge distribution at the TiO2 catalytic interface, thereby increasing interfacial charge density and promoting charge migration to ozone. Furthermore, this process leads to enhanced overlap and hybridization between ≡(H2O)2 sites and the s and p orbitals of ozone molecules, resulting in the formation of chemical bonds with lower Fermi levels. These comprehensive results demonstrate the broad applicability of the electrochemical interfacial ozone adsorption enhancement method across different crystal types and surfaces. Consequently, this study provides essential data to support the advancement of greener and more energy-efficient heterogeneous catalytic ozonation processes, potentially contributing to significant improvements in ozone-based water treatment technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA