Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Biol Sci ; 20(13): 5127-5144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430242

RESUMO

Glioblastoma (GBM) is highly invasive and lethal. The failure to cure GBM highlights the necessity of developing more effective targeted therapeutic strategies. KIF15 is a motor protein to be involved in cell mitosis promotion, cell structure assembly and cell signal transduction. The precise biological function and the potential upstream regulatory mechanisms of KIF15 in GBM remain elusive. Here, we demonstrated that KIF15 was abnormally up-regulated in GBM and predicted poor prognosis of GBM patients. KIF15 promotes GBM cell proliferation, metastasis and cell cycle progression. REST could bind to KIF15 promoter and transactivate KIF15. Furthermore, REST interacts with P300 and depends on its histone acetyltransferase (HAT) activity to co-regulate KIF15 expression. Both REST and P300 were highly expressed in GBM and predicted poor prognosis of GBM patients alone or in combination with KIF15. The tumorigenic function of KIF15 in GBM was regulated by REST in vitro and in vivo and the combinational treatment of cell cycle inhibitor Palbociclib with P300 HAT inhibitor inhibited GBM xenografts survival more significantly. Our findings indicate that KIF15 promotes GBM progression under the synergistic transactivation of REST and P300. P300/REST/KIF15 signaling axis is expected to be served as a cascade of candidate therapeutic targets in anti-GBM.


Assuntos
Glioblastoma , Cinesinas , Humanos , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Cinesinas/metabolismo , Cinesinas/genética , Linhagem Celular Tumoral , Animais , Camundongos , Camundongos Nus , Proliferação de Células/genética , Ativação Transcricional , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras
2.
Biomolecules ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39062456

RESUMO

As a kind of proteolytic enzyme extracted from earthworms, lumbrokinase has been used as an antithrombotic drug clinically. Nevertheless, its potential in anti-cancer, especially in anti-non-small cell lung cancer (NSCLC), as a single form of treatment or in combination with other therapies, is still poorly understood. In this study, we explored the anti-tumor role and the responsive molecular mechanisms of lumbrokinase in suppressing tumor angiogenesis and chemoresistance development in NSCLC and its clinical potential in combination with bevacizumab and chemotherapeutics. Lumbrokinase was found to inhibit cell proliferation in a concentration-dependent manner and caused metastasis suppression and apoptosis induction to varying degrees in NSCLC cells. Lumbrokinase enhanced the anti-angiogenesis efficiency of bevacizumab by down-regulating BPTF expression, decreasing its anchoring at the VEGF promoter region and subsequent VEGF expression and secretion. Furthermore, lumbrokinase treatment reduced IC50 values of chemotherapeutics and improved their cytotoxicity in parental and chemo-resistant NSCLC cells via inactivating the NF-κB pathway, inhibiting the expression of COX-2 and subsequent secretion of PGE2. LPS-induced NF-κB activation reversed its inhibition on NSCLC cell proliferation and its synergy with chemotherapeutic cytotoxicity, while COX-2 inhibitor celecoxib treatment boosted such effects. Lumbrokinase combined with bevacizumab, paclitaxel, or vincristine inhibited the xenograft growth of NSCLC cells in mice more significantly than a single treatment. In conclusion, lumbrokinase inhibited NSCLC survival and sensitized NSCLC cells to bevacizumab or chemotherapeutics treatment by targeted down-regulation of BPTF/VEGF signaling and inactivation of NF-κB/COX-2 signaling, respectively. The combinational applications of lumbrokinase with bevacizumab or chemotherapeutics are expected to be developed as promising candidate therapeutic strategies to improve the efficacy of the original monotherapy in anti-NSCLC.


Assuntos
Bevacizumab , Carcinoma Pulmonar de Células não Pequenas , Ciclo-Oxigenase 2 , Sinergismo Farmacológico , Neoplasias Pulmonares , NF-kappa B , Oligoquetos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , NF-kappa B/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Endopeptidases
3.
Heliyon ; 10(13): e33760, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071633

RESUMO

Objectives: To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. Materials and methods: Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. Results: LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. Conclusions: The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.

4.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696609

RESUMO

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Ferro , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Masculino , Feminino , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Ferro/metabolismo , Ferro/análise , Pré-Escolar , Mapeamento Encefálico/métodos , Substância Branca/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem
5.
Cancer Imaging ; 24(1): 63, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773670

RESUMO

BACKGROUND: Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. METHODS: In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. RESULTS: Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. CONCLUSIONS: Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Neoplasias Gástricas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Aprendizado Profundo
6.
Brain Struct Funct ; 229(4): 959-970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502329

RESUMO

Hemifacial spasm (HFS) is a syndrome characterized by involuntary contractions of the facial muscles innervated by the ipsilateral facial nerve. Currently, microvascular decompression (MVD) is an effective treatment for HFS. Diffusion weighted imaging (DWI) is a non-invasive advanced magnetic resonance technique that allows us to reconstruct white matter (WM) virtually based on water diffusion direction. This enables us to model the human brain as a complex network using graph theory. In our study, we recruited 32 patients with HFS and 32 healthy controls to analyze and compare the topological organization of whole-brain white matter networks between the groups. We also explored the potential relationships between altered topological properties and clinical outcomes. Compared to the HC group, the white matter network was disrupted in both preoperative and postoperative groups of HFS patients, mainly located in the somatomotor network, limbic network, and default network (All P < 0.05, FDR corrected). There was no significant difference between the preoperative and postoperative groups (P > 0.05, FDR corrected). There was a correlation between the altered topological properties and clinical outcomes in the postoperative group of patients (All P < 0.05, FDR corrected). Our findings indicate that in HFS, the white matter structural network was disrupted before and after MVD, and that these alterations in the postoperative group were correlated with the clinical outcomes. White matter alteration here described may subserve as potential biomarkers for HFS and may help us identify patients with HFS who can benefit from MVD and thus can help us make a proper surgical patient selection.


Assuntos
Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Substância Branca , Humanos , Espasmo Hemifacial/diagnóstico por imagem , Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Resultado do Tratamento , Imagem de Difusão por Ressonância Magnética , Estudos Retrospectivos
7.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447683

RESUMO

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Doença de Alzheimer/patologia , Conectoma/métodos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Ferro
8.
J Transl Med ; 22(1): 107, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279111

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS: We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS: We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS: We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.


Assuntos
Glioblastoma , RNA Longo não Codificante , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , RNA Longo não Codificante/genética , Radiômica , Prognóstico , Área Sob a Curva , Microambiente Tumoral/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38082801

RESUMO

Accurate segmentation of gastric tumors from computed tomography (CT) images provides useful image information for guiding the diagnosis and treatment of gastric cancer. Researchers typically collect datasets from multiple medical centers to increase sample size and representation, but this raises the issue of data heterogeneity. To this end, we propose a new cross-center 3D tumor segmentation method named unsupervised scale-aware and boundary-aware domain adaptive network (USBDAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale features from the CT images with anisotropic resolution, and a scale-aware and boundary-aware domain alignment (SaBaDA) module for adaptively aligning multi-scale features between two domains and enhancing tumor boundary drawing based on location-related information drawn from each sample across all domains. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers. Our results demonstrate that the proposed method outperforms several state-of-the-art methods.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Anisotropia , Conscientização , Fontes de Energia Elétrica , Hospitais
10.
Front Med (Lausanne) ; 10: 1271687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098850

RESUMO

Objective: To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. Methods: 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. Results: After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). Conclusion: This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.

11.
Neuroimage ; 282: 120381, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734476

RESUMO

OBJECTIVE: The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS: Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS: Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION: CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Oxigênio , Testes de Função Respiratória , Consumo de Oxigênio/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética
12.
Quant Imaging Med Surg ; 13(7): 4676-4686, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456292

RESUMO

Background: The most common cause of lower motor neuron facial palsy is Bell's palsy (BP). BP results in partial or complete inability to automatically move the facial muscles on the affected side and, in some cases, to close the eyelids, which can cause permanent eye damage. This study investigated changes in brain function and connectivity abnormalities in patients with BP. Methods: This study included 46 patients with unilateral BP and 34 healthy controls (HCs). Resting-state brain functional magnetic resonance imaging (fMRI) images were acquired, and Toronto Facial Grading System (TFGS) scores were obtained for all participants. The fractional amplitude of low-frequency fluctuation (fALFF) was estimated, and the relationship between the TFGS and fALFF was determined using correlation analysis for brain regions with changes in fALFF in those with BP versus HCs. Brain regions associated with TFGS were used as seeds for further functional connectivity (FC) analysis; relationships between FC values of abnormal areas and TFGS scores were also analyzed. Results: Activation of the right precuneus, right angular gyrus, left supramarginal gyrus, and left middle occipital gyrus was significantly decreased in the BP group. fALFF was significantly higher in the right thalamus, vermis, and cerebellum of the BP group compared with that in the HC group (P<0.05). The FC between the left middle occipital gyrus and right angular gyrus, left precuneus, and right middle frontal gyrus increased sharply, but decreased in the left angular gyrus, left posterior cingulate gyrus, left middle frontal gyrus, inferior cerebellum, and left middle temporal gyrus. Furthermore, the fALFF in the left middle occipital gyrus was negatively correlated with TFGS score (R=0.144; P=0.008). Conclusions: The pathogenesis of BP is closely related to functional reorganization of the cerebral cortex. Patients with BP have altered fALFF activity in cortical regions associated with facial motion feedback monitoring.

13.
Front Neurosci ; 17: 1152161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207180

RESUMO

Introduction: Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown. Methods: Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions. Results: MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus. Conclusion: The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.

14.
Cancer Sci ; 114(6): 2277-2292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36786527

RESUMO

The mediator complex usually cooperates with transcription factors to be involved in RNA polymerase II-mediated gene transcription. As one component of this complex, MED27 has been reported in our previous studies to promote thyroid cancer and melanoma progression. However, the precise function of MED27 in breast cancer development remains poorly understood. Here, we found that MED27 was more highly expressed in breast cancer samples than in normal tissues, especially in triple-negative breast cancer, and its expression level was elevated with the increase in pathological stage. MED27 knockdown in triple-negative breast cancer cells inhibited cancer cell metastasis and stemness maintenance, which was accompanied by downregulation of the expression of EMT- and stem traits-associated proteins, and vice versa in non-triple-negative breast cancer. Furthermore, MED27 knockdown sensitized breast cancer cells to epirubicin treatment by inducing cellular apoptosis and reducing tumorsphere-forming ability. Based on RNA-seq, we identified KLF4 as the possible downstream target of MED27. KLF4 overexpression reversed the MED27 silencing-mediated arrest of cellular metastasis and stemness maintenance capacity in breast cancer in vitro and in vivo. Mechanistically, MED27 transcriptionally regulated KLF4 by binding to its promoter region at positions -156 to +177. Collectively, our study not only demonstrated the tumor-promoting role of MED27 in breast cancer progression by transcriptionally targeting KLF4, but also suggested the possibility of developing the MED27/KLF4 signaling axis as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Mamárias Animais/genética , Complexo Mediador/genética , Complexo Mediador/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
15.
Front Neurosci ; 16: 1045585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425476

RESUMO

Introduction: Pseudocontinuous Arterial Spin Labeling (pCASL) perfusion imaging allows non-invasive quantification of regional cerebral blood flow (CBF) as part of a multimodal magnetic resonance imaging (MRI) protocol. This study aimed to compare regional CBF in autism spectrum disorders (ASD) individuals with their age-matched typically developing (TD) children using pCASL perfusion imaging. Materials and methods: This cross-sectional study enrolled 17 individuals with ASD and 13 TD children. All participants underwent pCASL examination on a 3.0 T MRI scanner. Children in two groups were assessed for clinical characteristics and developmental profiles using Autism Behavior Checklist (ABC) and Gesell development diagnosis scale (GDDS), respectively. We compared CBF in different cerebral regions of ASD and TD children. We also assessed the association between CBF and clinical characteristics/developmental profile. Results: Compared with TD children, individuals with ASD demonstrated a reduction in CBF in the left frontal lobe, the bilateral parietal lobes, and the bilateral temporal lobes. Within the ASD group, CBF was significantly higher in the right parietal lobe than in the left side. Correlation analysis of behavior characteristics and CBF in different regions showed a positive correlation between body and object domain scores on the ABC and CBF of the bilateral occipital lobes, and separately, between language domain scores and CBF of the left frontal lobe. The score of the social and self-help domain was negatively correlated with the CBF of the left frontal lobe, the left parietal lobe, and the left temporal lobe. Conclusion: Cerebral blood flow was found to be negatively correlated with scores in the social and self-help domain, and positively correlated with those in the body and object domain, indicating that CBF values are a potential MRI-based biomarker of disease severity in ASD patients. The findings may provide novel insight into the pathophysiological mechanisms of ASD.

16.
Quant Imaging Med Surg ; 12(9): 4570-4586, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36060596

RESUMO

Background: In Alzheimer's disease (AD), cerebral iron accumulation colocalizes with the pathological proteins amyloid-ß (Aß) and tau. Furthermore, tau-induced cortical thinning is associated with cognitive decline. In this study, quantitative susceptibility mapping (QSM) was used to investigate the whole-brain distribution pattern of cortical iron deposition and its relationships with cognition and cortical thickness in AD. Methods: This cross-sectional study prospectively recruited 30 participants with AD and 26 age- and sex-matched healthy controls (HCs). All participants underwent QSM and T1-weighted examinations on a 3.0T MRI scanner. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Whole-brain cross-sectional QSM analysis and whole-brain QSM regression analyses against the MMSE and MoCA scores were performed. Surface-based morphometry analysis was also performed. Subsequently, in regions with significant atrophy, magnetic susceptibility was compared between the AD and HC groups, and the association between magnetic susceptibility and cortical thickness was assessed. Results: Whole-brain QSM cross-sectional analysis in the AD group demonstrated widespread increased susceptibility across the cortical ribbon, asymmetrically covering the left hemisphere cerebral cortex, caudate nucleus, putamen, and partial cerebellar cortex. Whole-brain QSM regression analyses in the AD group showed that increased susceptibility covaried with lower MMSE and MoCA scores, and was predominantly located in the right parietal cortex and lateral occipital cortex. In the AD group, cortical thickness was reduced in the left superior temporal gyrus, right frontal pole, fusiform gyus, and pars opercularis, and there were increases in susceptibility in the right frontal pole (AD: mean ± SD 0.034±0.007 ppm, 95% CI: 0.032-0.037 ppm; HC: 0.030±0.005 ppm, 95% CI: 0.028-0.032 ppm; P=0.016) and pars opercularis (AD: 0.020±0.003 ppm, 95% CI: 0.018-0.021 ppm; HC: 0.017±0.002 ppm, 95% CI: 0.017-0.018 ppm; P=0.002). Susceptibility was negatively correlated with cortical thickness in the right pars opercularis in the entire cohort (r=-0.521, P<0.001) and AD group (r=-0.510, P=0.005). Conclusions: Widespread cortical iron, as measured by QSM, accumulated in AD and iron deposition was associated with poor cognitive performance. Increased iron content was also associated with brain atrophy. Our study suggests QSM may be a useful imaging biomarker for monitoring the neurodegenerative progression of AD.

17.
Front Neurosci ; 16: 977145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177360

RESUMO

Objectives: Spinocerebellar degeneration (SCD) comprises a multitude of disorders with sporadic and hereditary forms, including spinocerebellar ataxia (SCA). Except for progressive cerebellar ataxia and structural atrophy, hemodynamic changes have also been observed in SCD. This study aimed to explore the whole-brain patterns of altered cerebral blood flow (CBF) and its correlations with disease severity and psychological abnormalities in SCD via arterial spin labeling (ASL). Methods: Thirty SCD patients and 30 age- and sex-matched healthy controls (HC) were prospectively recruited and underwent ASL examination on a 3.0T MR scanner. The Scale for Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS) scores were used to evaluate the disease severity in SCD patients. Additionally, the status of anxiety, depression and sleep among all patients were, respectively, evaluated by the Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS) and Self-Rating Scale of Sleep (SRSS). We compared the whole-brain CBF value between SCD group and HC group at the voxel level. Then, the correlation analyses between CBF and disease severity, and psychological abnormalities were performed on SCD group. Results: Compared with HC, SCD patients demonstrated decreased CBF value in two clusters (FWE corrected P < 0.05), covering bilateral dentate and fastigial nuclei, bilateral cerebellar lobules I-IV, V and IX, left lobule VI, right lobule VIIIb, lobules IX and X of the vermis in the cerebellar Cluster 1 and the dorsal part of raphe nucleus in the midbrain Cluster 2. The CBF of cerebellar Cluster 1 was negatively correlated with SARA scores (Spearman's rho = -0.374, P = 0.042) and SDS standard scores (Spearman's rho = -0.388, P = 0.034), respectively. And, the CBF of midbrain Cluster 2 also had negative correlations with SARA scores (Spearman's rho = -0.370, P = 0.044) and ICARS scores (Pearson r = -0.464, P = 0.010). Conclusion: The SCD-related whole-brain CBF changes mainly involved in the cerebellum and the midbrain of brainstem, which are partially overlapped with the related function cerebellar areas of hand, foot and tongue movement. Decreased CBF was related to disease severity and depression status in SCD. Therefore, CBF may be a promising neuroimaging biomarker to reflect the severity of SCD and suggest mental changes.

18.
Redox Biol ; 55: 102418, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932692

RESUMO

As the largest subunit of the nuclear remodeling factor complex, Bromodomain PHD Finger Transcription Factor (BPTF) has been reported to be involved in tumorigenesis and development in several cancers. However, to date, its functions and related molecular mechanisms in colorectal cancer (CRC) are still poorly defined and deserve to be revealed. In this study, we uncovered that, under the expression regulation of c-Myc, BPTF promoted CRC progression by targeting Cdc25A. BPTF was found to be highly expressed in CRC and promoted the proliferation and metastasis of CRC cells through BPTF specific siRNAs, shRNAs or inhibitors. Based on RNA-seq, combined with DNA-pulldown, ChIP and luciferase reporter assay, we proved that, by binding to -178/+107 region within Cdc25A promoter, BPTF transcriptionally activated Cdc25A, thus accelerating the cell cycle process of CRC cells. Meanwhile, BPTF itself was found to be transcriptionally regulated by c-Myc. Moreover, BPTF knockdown or inactivation was verified to sensitize CRC cells to chemotherapeutics, 5-Fluorouracil (5FU) and Oxaliplatin (Oxa), c-Myc inhibitor and cell cycle inhibitor not just at the cellular level in vitro, but in subcutaneous xenografts or AOM/DSS-induced in situ models of CRC in mice, while Cdc25A overexpression partially reversed BPTF silencing-caused tumor growth inhibition. Clinically, BPTF, c-Myc and Cdc25A were highly expressed in CRC tissues simultaneously, the expression of any two of the three was positively correlated, and their expressions were highly relevant to tumor differentiation, TNM staging and poor prognosis of CRC patients. Thus, our study indicated that the targeted inhibition of BPTF alone, or together with chemotherapy and/or cell cycle-targeted therapy, might act as a promising new strategy for CRC treatment, while c-Myc/BPTF/Cdc25A signaling axis is expected to be developed as an associated set of candidate biomarkers for CRC diagnosis and prognosis prediction.

19.
Med Image Anal ; 79: 102467, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537338

RESUMO

Preoperative prediction of lymph node (LN) metastasis based on computed tomography (CT) scans is an important task in gastric cancer, but few machine learning-based techniques have been proposed. While multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. To tackle the above issue, we propose a novel multi-source domain adaptation framework for this diagnosis task, which not only considers domain-invariant and domain-specific features, but also achieves the imbalanced knowledge transfer and class-aware feature alignment across domains. First, we develop a 3D improved feature pyramidal network (i.e., 3D IFPN) to extract common multi-level features from the high-resolution 3D CT images, where a feature dynamic transfer (FDT) module can promote the network's ability to recognize the small target (i.e., LN). Then, we design an unsupervised domain selective graph convolutional network (i.e., UDS-GCN), which mainly includes three types of components: domain-specific feature extractor, domain selector and class-aware GCN classifier. Specifically, multiple domain-specific feature extractors are employed for learning domain-specific features from the common multi-level features generated by the 3D IFPN. A domain selector via the optimal transport (OT) theory is designed for controlling the amount of knowledge transferred from source domains to the target domain. A class-aware GCN classifier is developed to explicitly enhance/weaken the intra-class/inter-class similarity of all sample pairs across domains. To optimize UDS-GCN, the domain selector and the class-aware GCN classifier provide reliable target pseudo-labels to each other in the iterative process by collaborative learning. The extensive experiments are conducted on an in-house CT image dataset collected from four medical centers to demonstrate the efficacy of our proposed method. Experimental results verify that the proposed method boosts LN metastasis diagnosis performance and outperforms state-of-the-art methods. Our code is publically available at https://github.com/infinite-tao/LN_MSDA.


Assuntos
Neoplasias Gástricas , Humanos , Metástase Linfática/diagnóstico por imagem , Aprendizado de Máquina , Tamanho da Amostra , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Tomografia Computadorizada por Raios X
20.
Front Neurosci ; 16: 856710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356053

RESUMO

Objective: This study analyzed the differences in the cerebral blood flow (CBF) between unilateral Sudden Sensorineural Hearing Loss (SSNHL) patients and healthy controls (HCs). We also investigated CBF differences in auditory-related areas in patients with left- and right-sided SSNHL (lSSNHL and rSSNHL) and HCs. We further explore the correlation between unilateral SSNHL characteristics and changes in the CBF. Methods: 36 patients with unilateral SSNHL (15 males and 21 females, 40.39 ± 13.42 years) and 36 HCs (15 males and 21 females, 40.39 ± 14.11 years) were recruited. CBF images were collected and analyzed using arterial spin labeling (ASL). CereFlow software was used for the post-processing of the ASL data to obtain the CBF value of 246 subregions within brainnetome atlas (BNA). The Two-sample t-test was used to compare CBF differences between SSNHL patients and HCs. One-way ANOVA or Kruskal-Wallis test was used to compare the CBF difference of auditory-related areas among the three groups (lSSNHL, rSSNHL, and HCs). Then, the correlation between CBF changes and specific clinical characteristics were calculated. Results: The SSNHL patients exhibited decreased CBF in the bilateral middle frontal gyrus (MFG, MFG_7_1 and MFG_7_3), the contralateral precentral gyrus (PrG, PrG_6_3) and the bilateral superior parietal lobule (SPL, bilateral SPL_5_1, SPL_5_2, and ipsilateral SPL_5_4), p < 0.0002. Compared with HCs, unilateral SSNHL patients exhibited increased rCBF in the bilateral orbital gyrus (OrG, OrG_6_5), the bilateral inferior temporal gyrus (ITG, contralateral ITG_7_1 and bilateral ITG_7_7), p < 0.0002. lSSNHL showed abnormal CBF in left BA21 caudal (p = 0.02) and left BA37 dorsolateral (p = 0.047). We found that the CBF in ipsilateral MFG_7_1 of SSNHL patients was positively correlated with tinnitus Visual Analog Scale (VAS) score (r = 0.485, p = 0.008). Conclusion: Our preliminary study explored CBF pattern changes in unilateral SSNHL patients in auditory-related areas and non-auditory areas, suggesting that there may exist reduced attention and some sensory compensation in patients with SSNHL. These findings could advance our understanding of the potential pathophysiology of unilateral SSNHL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA