Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Heliyon ; 10(9): e30859, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774073

RESUMO

Canine circovirus (CanineCV), which is a new mammalian circovirus first reported in the United States in 2012, mainly causes diarrhea and vomiting in dogs. As CanineCV evolves and new subtypes emerge, there is an urgent need for new detection technologies to improve the sensitivity and detection rates of viruses in complex scenarios. A chip digital PCR(cdPCR) assay was established for the detection of CanineCV in this study. The results showed good reproducibility, specificity and a linear relationship; the minimum detection limit of CanineCV by cdPCR was 6.62 copies/µL, which is 10 times more sensitive than quantitative real-time PCR (qPCR). The qPCR-positive detection rate was 1 %, while CanineCV cdPCR (2.1 %) exhibited a greater positive detection rate. Fifteen complete genomes were sequenced and subdivided into CanineCV-1 and CanineCV-3. In conclusion, we developed a rapid, reliable, and specific cdPCR method for screening and monitoring canine CV.

2.
J Hazard Mater ; 471: 134400, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691927

RESUMO

VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.


Assuntos
Substâncias para a Guerra Química , Compostos Organotiofosforados , Animais , Compostos Organotiofosforados/urina , Compostos Organotiofosforados/metabolismo , Cobaias , Substâncias para a Guerra Química/metabolismo , Masculino , Biomarcadores/urina , Agentes Neurotóxicos/metabolismo
3.
Int Immunopharmacol ; 132: 111935, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599096

RESUMO

Finding novel therapeutic modalities, improving drug delivery efficiency and targeting, and reducing the immune escape of tumor cells are currently hot topics in the field of tumor therapy. Bacterial therapeutics have proven highly effective in preventing tumor spread and recurrence, used alone or in combination with traditional therapies. In recent years, a growing number of researchers have significantly improved the targeting and penetration of bacteria by using genetic engineering technology, which has received widespread attention in the field of tumor therapy. In this paper, we provide an overview and assessment of the advancements made in the field of tumor therapy using genetically engineered bacteria. We cover three major aspects: the development of engineered bacteria, their integration with other therapeutic techniques, and the current state of clinical trials. Lastly, we discuss the limitations and challenges that are currently being faced in the utilization of engineered bacteria for tumor therapy.


Assuntos
Bactérias , Engenharia Genética , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Bactérias/genética , Imunoterapia/métodos , Sistemas de Liberação de Medicamentos
4.
J Neuroimmune Pharmacol ; 19(1): 1, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214766

RESUMO

Augmentation of endoplasmic reticulum (ER) stress may trigger excessive oxidative stress, which induces mitochondrial dysfunction. The fatty acid amide hydrolase inhibitor, URB597, shows anti-oxidation characteristics in multiple neurological disorders. The present study aimed to determine whether inhibition of ER stress was involved in the protective effects of URB597 against chronic cerebral hypoperfusion (CCH)-induced cognitive impairment. Hippocampal HT-22 cells were exposed to oxygen-glucose deprivation. The cell viability, apoptosis, ER stress, mitochondrial ATP, and oxidative stress levels were assessed following treatment with URB597, benzenebutyric acid (4-PBA), and thapsigargin (TG). Furthermore, the effects of URB597 on ER stress and related pathways were investigated in the CCH animal model, including Morris water maze testing of cognition, western blotting analysis of ER stress signaling, and transmission electron microscopy of mitochondrial and ER ultrastructure changes. The results suggested that cerebral ischemia caused ER stress with upregulation of ER stress signaling-related proteins, mitochondrial dysfunction, neuronal apoptosis, ultrastructural injuries of mitochondria-associated ER membranes, and cognitive decline. Co-immunoprecipitation experiments confirmed the interaction between CB2 and ß-Arrestin1. Inhibiting ER stress by URB597 improved these changes by activating CB2/ß-Arrestin1 signaling, which was reversed by the CB2 antagonist, AM630. Together, the results identified a novel mechanism of URB597, involving CCH-induced cognitive impairment alleviation of CB2-dependent ER stress and mitochondrial dysfunction. Furthermore, this study identified CB2 as a potential target for therapy of ischemic cerebrovascular diseases.


Assuntos
Benzamidas , Isquemia Encefálica , Carbamatos , Disfunção Cognitiva , Doenças Mitocondriais , Ratos , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Estresse do Retículo Endoplasmático , Apoptose
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2105-2120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37782380

RESUMO

Bacoside A (gypenoside, Gyp) is a potent bioactive compound derived from Gynostemma pentaphyllum, known to exert inhibitory effects on various malignant tumors. However, the effects of Gyp on glioma as well as the underlying mechanisms remain unclear. In the present study, we first conducted a comprehensive investigation into the anti-glioma potential of gypenosides using network pharmacology to identify potential glioma-related targets. Protein-protein interaction networks were assembled, and GO and KEGG enrichment analyses were performed for shared targets. Experimental validation involved assessing the viability of U251 and U87 cell lines using the MTS method. Furthermore, trans-well and scratch migration assays evaluated the cell migration, while flow cytometry and Hoechst 33342 staining were utilized for apoptosis assessment. The study also monitored changes in autophagy flow through fluorescence microscopy. The expression levels of proteins pertinent to migration, apoptosis, and autophagy were tested using Western blotting. Findings revealed that Gyp upregulated apoptosis-related proteins (Bax and cleaved caspase-9), downregulated anti-apoptotic protein Bcl-2, and migration-associated matrix metalloproteinases (MMP-2 and MMP-9). Furthermore, autophagy-related proteins (Beclin1 and LC3 II) were upregulated, and p62 protein expression was downregulated. Gyp displayed considerable potential in suppressing glioma progression by inhibiting cell proliferation, invasion, and migration and promoting apoptosis and autophagy. Gyp may offer potential clinical therapeutic choices in glioma management.


Assuntos
Apoptose , Glioma , Saponinas , Triterpenos , Humanos , Glioma/tratamento farmacológico , Glioma/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células , Autofagia , Linhagem Celular Tumoral
6.
Anal Biochem ; 685: 115388, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967783

RESUMO

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.


Assuntos
Soman , Animais , Humanos , Coelhos , Soman/metabolismo , Európio , Microfluídica , Estudos Retrospectivos , Albumina Sérica Humana , Imunofluorescência
7.
Mini Rev Med Chem ; 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37859309

RESUMO

Long noncoding RNAs (lncRNAs) represent a large subgroup of RNA transcripts that lack the function of coding proteins and may be essential universal genes involved in carcinogenesis and metastasis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNAMALAT1) is overexpressed in various human tumors, including gliomas. However, the biological function and molecular mechanism of action of lncRNA-MALAT1 in gliomas have not yet been systematically elucidated. Accumulating evidence suggests that the abnormal expression of lncRNA-MALAT1 in gliomas is associated with various physical properties of the glioma, such as tumor growth, metastasis, apoptosis, drug resistance, and prognosis. Furthermore, lncRNAs, as tumor progression and prognostic markers in gliomas, may affect tumorigenesis, proliferation of glioma stem cells, and drug resistance. In this review, we summarize the knowledge on the biological functions and prognostic value of lncRNA-MALAT1 in gliomas. This mini-review aims to deepen the understanding of lncRNA-MALAT1 as a novel potential therapeutic target for the individualized precision treatment of gliomas.

8.
J Stroke Cerebrovasc Dis ; 32(11): 107367, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734181

RESUMO

OBJECTIVE: Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS: To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS: LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION: Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.

10.
Cancer Lett ; 564: 216219, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37146937

RESUMO

Tumor immunotherapy is a new therapeutic approach that has been evolving in the last decade and has dramatically changed the treatment options for cancer. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) with high stability, tissue-specific and cell-specific expression. There is growing evidence that circRNAs are involved in the regulation of both adaptive and innate immunity. They play important roles in tumor immunotherapy by affecting macrophage, NK and T cell function. The high stability and tissue specificity make them ideal candidate biomarkers for therapeutic effects. CircRNAs also represent one of promising targets or adjuvant for immunotherapy. Investigations in this field progress rapidly and provide essential support for the diagnosis, prognosis and treatment guidance of cancers in the future. In this review, we summarize the role of circRNAs on tumor immunity from the viewpoint of innate and adaptive immunity, and explore the role of circRNAs in tumor immunotherapy.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , Biomarcadores , Neoplasias/genética , Neoplasias/terapia , Imunidade Adaptativa/genética , Imunoterapia
11.
iScience ; 26(4): 106306, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36994076

RESUMO

Universal quantum algorithms (UQA) implemented on fault-tolerant quantum computers are expected to achieve an exponential speedup over classical counterparts. However, the deep quantum circuits make the UQA implausible in the current era. With only the noisy intermediate-scale quantum (NISQ) devices in hand, we introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology. Based on this framework, we present two quantum-assisted quantum algorithms for simulating open quantum systems, which utilize two parameterized quantum circuits to achieve a short-time evolution. We propose a variational quantum state preparation method, as a subroutine to prepare the ancillary state, for loading a classical vector into a quantum state with a shallow quantum circuit and logarithmic number of qubits. We demonstrate numerically our approaches for a two-level system with an amplitude damping channel and an open version of the dissipative transverse field Ising model on two sites.

12.
J Transl Med ; 21(1): 11, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624463

RESUMO

BACKGROUND: Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma (NPC). However, due to individual differences in radiosensitivity, biomarkers are needed to tailored radiotherapy to cancer patients. However, comprehensive genome-wide radiogenomic studies on them are still lacking. The aim of this study was to identify genetic variants associated with radiotherapy response in patients with NPC. METHODS: This was a large­scale genome-wide association analysis (GWAS) including a total of 981 patients. 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant loci were further genotyped using MassARRAY system and TaqMan SNP assays in the validation stages of 847 patients. This study used logistic regression analysis and multiple bioinformatics tools such as PLINK, LocusZoom, LDBlockShow, GTEx, Pancan-meQTL and FUMA to examine genetic variants associated with radiotherapy efficacy in NPC. RESULTS: After genome-wide level analysis, 19 SNPs entered the validation stage (P < 1 × 10- 6), and rs11130424 ultimately showed statistical significance among these SNPs. The efficacy was better in minor allele carriers of rs11130424 than in major allele carriers. Further stratified analysis showed that the association existed in patients in the EBV-positive, smoking, and late-stage (III and IV) subgroups and in patients who underwent both concurrent chemoradiotherapy and induction/adjuvant chemotherapy. CONCLUSION: Our study showed that rs11130424 in the CACNA2D3 gene was associated with sensitivity to radiotherapy in NPC patients. TRIAL REGISTRATION NUMBER: Effect of genetic polymorphism on nasopharyngeal carcinoma chemoradiotherapy reaction, ChiCTR-OPC-14005257, Registered 18 September 2014, http://www.chictr.org.cn/showproj.aspx?proj=9546 .


Assuntos
Canais de Cálcio , Estudo de Associação Genômica Ampla , Neoplasias Nasofaríngeas , Humanos , Quimiorradioterapia , Variação Genética , Genótipo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Canais de Cálcio/genética
15.
mSphere ; 7(6): e0045022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409080

RESUMO

The yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far. Here, we identify a novel repressor of filamentation in the dimorphic yeast Yarrowia lipolytica, Fts2, which is a C2H2-type zinc finger transcription factor. We show that fts2Δ cells exhibited increased filamentation under mild filament-inducing conditions and formed filaments under non-filament-inducing conditions. We also show that Fts2 interacts with YlSsn6, component of the Tup1-Ssn6 transcriptional corepressor, and Fts2-LexA represses a lexAop-PYlACT1-lacZ reporter in a Tup1-Ssn6-dependent manner, suggesting that Fts2 has transcriptional repressor activity and represses gene expression via Tup1-Ssn6. In addition, we show that Fts2 represses a large number of cell wall protein genes and transcription factor genes, some of which are implicated in the filamentation response. Interestingly, about two-thirds of Fts2-repressed genes are also repressed by Tup1-Ssn6, suggesting that Fts2 may repress the bulk of its target genes via Tup1-Ssn6. Lastly, we show that Fts2 expression is downregulated in response to alkaline pH and the relief of negative control by Fts2 facilitates the induction of filamentation by alkaline pH. IMPORTANCE The repressors of filamentation are important negative regulators of the yeast-to-filament transition. However, except in Candida albicans, very few repressors of filamentation are known in dimorphic fungi. More importantly, how they repress filamentation is often not clear. In this paper, we report a novel repressor of filamentation in Y. lipolytica. Fts2 is not closely related in amino acid sequence to CaNrg1 and Rfg1, two major repressors of filamentation in C. albicans, yet it represses gene expression via the transcriptional corepressor Tup1-Ssn6, similar to CaNrg1 and Rfg1. Using transcriptome sequencing, we determined the whole set of genes regulated by Fts2 and identified the major targets of Fts2 repression, which provide clues to the mechanism by which Fts2 represses filamentation. Our results have important implications for understanding the negative control of the yeast-to-filament transition in dimorphic fungi.


Assuntos
Fatores de Transcrição , Yarrowia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Dedos de Zinco , Proteínas Correpressoras
16.
Front Genet ; 13: 952083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092919

RESUMO

Objective: The aim of this study was to establish predictive models based on the molecular profiles of endometrial lesions, which might help identify progestin-insensitive endometrial atypical hyperplasia (EAH) or endometrioid endometrial cancer (EEC) patients before progestin-based fertility-preserving treatment initiation. Methods: Endometrial lesions from progestin-sensitive (PS, n = 7) and progestin-insensitive (PIS, n = 7) patients were prospectively collected before progestin treatment and then analyzed by ATAC-Seq and RNA-Seq. Potential chromatin accessibility and expression profiles were compared between the PS and PIS groups. Candidate genes were identified by bioinformatics analyses and literature review. Then expanded samples (n = 35) were used for validating bioinformatics data and conducting model establishment. Results: ATAC-Seq and RNA-Seq data were separately analyzed and then integrated for the subsequent research. A total of 230 overlapping differentially expressed genes were acquired from ATAC-Seq and RNA-Seq integrated analysis. Further, based on GO analysis, REACTOME pathways, transcription factor prediction, motif enrichment, Cytoscape analysis and literature review, 25 candidate genes potentially associated with progestin insensitivity were identified. Finally, expanded samples were used for data verification, and based on these data, three predictive models comprising 9 genes (FOXO1, IRS2, PDGFC, DIO2, SOX9, BCL11A, APOE, FYN, and KLF4) were established with an overall predictive accuracy above 90%. Conclusion: This study provided potential predictive models that might help identify progestin-insensitive EAH and EEC patients before fertility-preserving treatment.

17.
Mol Cancer ; 21(1): 169, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999636

RESUMO

BACKGROUND: Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS: We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. RESULTS: Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10- 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). CONCLUSIONS: Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2).


Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Quimiorradioterapia , Transtornos de Deglutição/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia
18.
Oxid Med Cell Longev ; 2022: 4139330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602108

RESUMO

Ischemic stroke, a cerebrovascular disease worldwide, triggers a cascade of pathophysiological events, including blood-brain barrier (BBB) breakdown. Brain microvascular endothelial cells (BMECs) play a vital role in maintaining BBB function. The injury of BMECs may worsen neurovascular dysfunction and patients' prognosis. Therefore, uncover the principal molecular mechanisms involved in BBB disruption in stroke becomes pressing. The endocannabinoid system (ECS) has been implicated in increasingly physiological functions, both in neurometabolism and cerebrovascular regulation. Modulating its activities by the fatty acid amide hydrolase (FAAH) shows anti-inflammatory characteristics. Andrographolide (AG), one Chinese herbal ingredient, has also attracted attention for its role in immunomodulatory and as a therapeutic target in BBB disorders. Recently, the FAAH inhibitor URB597 and AG have important regulatory effects on neuronal and vascular cells in ischemia. However, the effects of URB597 and AG on BMEC permeability and apoptosis in oxygen-glucose deprivation (OGD) and the underlying mechanisms remain unclear. To address these issues, cultured BMECs (bEnd.3 cells) were exposed to OGD. The cell viability, permeability, tube formation, and apoptosis were assessed following treatment with URB597, AG, and cotreatment. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), proinflammatory factors, tight junction (TJ) proteins, and oxidative stress-mediated Nrf2 signaling were also investigated. Results revealed that OGD broke the endothelial barrier, cell viability, MMP, and tube formation, which was reversed by URB597 and AG. OGD-induced enhancement of ROS, MDA, and apoptosis was reduced after drug interventions. URB597 and AG exhibited antioxidant/anti-inflammatory and mitochondrial protective effects by activating Nrf2 signaling. These findings indicated that URB597 and AG protect BMECs against OGD-induced endothelial permeability impairment and apoptosis by reducing mitochondrial oxidative stress and inflammation associated with activation of Nrf2 signaling. URB597 and AG showing the vascular protection may have therapeutic potential for the BBB damage in ischemic cerebrovascular diseases.


Assuntos
Células Endoteliais , Glucose , Humanos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Apoptose , Benzamidas , Encéfalo/metabolismo , Carbamatos , Diterpenos , Células Endoteliais/metabolismo , Glucose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo
19.
New Phytol ; 235(4): 1486-1500, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510797

RESUMO

Protein sorting is an essential biological process in all organisms. Trafficking membrane proteins generally relies on the sorting machinery of the Golgi apparatus. However, many proteins have been found to be delivered to target locations via Golgi-independent pathways, but the mechanisms underlying this delivery system remain unknown. Here, we report that Sec24C mediates the direct secretory trafficking of the phytochelatin transporters ABCC1 and ABCC2 from the endoplasmic reticulum (ER) to prevacuolar compartments (PVCs) in Arabidopsis thaliana. Genetic analysis showed that the sec24c mutants are hypersensitive to cadmium (Cd) and arsenic (As) treatments due to mislocalisation of ABCC1 and ABCC2, which results in defects in the vacuole compartmentalisation of the toxic metals. Furthermore, we found that Sec24C recognises ABCC1 and ABCC2 through direct interactions to mediate their exit from the ER to PVCs, which is independent of brefeldin A-sensitive post-Golgi trafficking pathway. These findings expand our understanding of Golgi-independent trafficking, which also provide key insights regarding the mechanism of tonoplast protein sorting and open a new perspective on the function of Sec24 proteins.


Assuntos
Arabidopsis , Fenômenos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Vacúolos/metabolismo
20.
J Chromatogr A ; 1671: 462990, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35390735

RESUMO

The detection of Chemical Weapon Convention (CWC)-related amine compounds including the precursors or degradation products of V-type organophosphorus nerve agent, nitrogen mustard and 3-quinuclidinyl benzilate is an important aspect for verifying their intact chemical warfare agents. This work focuses on the development of a novel formulation for the simultaneous solvent extraction of eleven CWC-related amine compounds, from the four-type soil matrices including environmental standard soil, sand, clay, and loam. Extracts were well separated on the hydrophilic interaction liquid chromatography (HILIC) and then detected by MS/MS multiple reaction monitoring mode. The type and component of solvent mixtures were optimized to cover a wide range of polarity over all eleven amine compounds with high extraction efficiencies. Extraction parameters, such as the proportion of methanol, water and NH4OH, the times and the period of extraction, and volumes of extraction solution were optimized. The results indicated that a mixed solvent of methanol/water (44:53, v/v) in 3.0% NH4OH was the optimal formulation for extraction of all 11 analytes with high mean extraction recoveries (64.4-96.1%). Specificity and sensitivity were well improved by the good separation of 11 analytes from four-type soil matrices using these optimized HILIC parameters. This method was fully validated for each analyte in four soil matrices. The linear range of 11 analytes was 0.50/0.75-500 ng·g-1 with correlation coefficient (R2) ≥0.990, and intra/inter-day accuracies were 70.3-125% with relative standard deviation (RSD) ≤19.3%. Limit of detection (LOD) of 11 analytes ranged from 0.01 to 0.5 ng·g-1, which was far lower than those reported in previous studies. The built method accomplishes simultaneously quantitative and trace measurement of all eleven CWC-related amine compounds within a single solvent extraction and detection. It only takes a small amount of soil samples and possesses the highest sensitivity over all previous methods. This study provides an optional recommended operating procedure for determination of CWC-related amine compounds in four typical types of complex soils during chemical weapons verification.


Assuntos
Agentes Neurotóxicos , Espectrometria de Massas em Tandem , Aminas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Metanol , Compostos Organofosforados , Solo/química , Extração em Fase Sólida , Solventes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA