Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(36): 42900-42911, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647417

RESUMO

The rapid advancement of communication technology has substantially increased the demand for advanced electronic packaging materials with high thermal conductivity and outstanding electrical insulation properties. In this study, we design polyvinyl alcohol/polydopamine-modified boron nitride nanosheet (PVA/BNNS@PDA) nanocomposites with hierarchical structures by combining electrospinning, vacuum filtration deposition, and hot pressing. The modified BNNS@PDA improves the interaction between the filler and the polymer matrix while reducing the interfacial thermal resistance, resulting in superior thermal conductivity, excellent insulation, and perfect flexibility. The PVA/BNNS@PDA nanocomposites possess an ultrahigh in-plane thermal conductivity of 16.6 W/(m·K) at 35.54 wt % BNNS@PDA content. Even after 2000 folds, the nanocomposites do not undergo any crack, showing their ultrahigh thermal conductivity behavior. Furthermore, the nanocomposites exhibit a volume resistivity above 1014 Ω·cm, which is well above the standard for insulating materials. Based on these results, this work provides a novel method to produce nanocomposites with high thermal conductivity, offering a new perspective to design advanced thermal management materials.

2.
Int J Biol Macromol ; 219: 1227-1236, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36058390

RESUMO

Infection is a huge obstacle to wound healing. Thus, to enhance the healing of infected wounds, wound dressings that permit the dual delivery of antimicrobials and antioxidants are highly desirable. In this study, a series of gelatin-based nanofiber membranes with different curcumin contents were fabricated via solution electrospinning. The obtained membranes were characterized in terms of their morphologies, in addition to their physical, mechanical, and in vitro properties. The results showed that the membranes maintained an integrated morphology, excellent water absorption capability, satisfactory mechanical properties, and a high dissolution rate of curcumin. The addition of curcumin and borneol conferred the membranes the ability to inhibit Staphylococcus aureus and eliminate free radicals. Furthermore, cytocompatibility testing using the L929 cell line confirmed the excellent biocompatibility of the membranes. These gelatin-based nanofiber membranes loaded with curcumin and borneol can therefore be considered as promising materials for dressing wounds. Moreover, the use of biodegradable polymers and environmentally sustainable production techniques in this system render it suitable for the commercial manufacture of composite membranes.


Assuntos
Curcumina , Nanofibras , Antibacterianos/farmacologia , Bandagens , Canfanos , Curcumina/farmacologia , Gelatina , Polímeros , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA