Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676537

RESUMO

In this paper, the hot tensile deformation of a GH3230 superalloy double-sheet was conducted under deformation temperatures ranging from 1123~1273 K and strain rates ranging from 0.001~0.2 s-1. The flow behavior of the GH3230 superalloy double-sheet was analyzed in detail. The hot tensile deformation process of the GH3230 superalloy double-sheet includes four stages of elastic deformation, strain hardening, steady state and fracture. The true stress decreases with the increasing deformation temperature and decreasing strain rate. The variation of the strain rate sensitivity index and strain hardening index with processing parameters were discussed. The average apparent activation energy for hot tensile deformation is 408.53 ± 46.96 kJ·mol-1. A combined Johnson-Cook and Hensel-Spittle model considering the couple effect of strain hardening, strain rate hardening and thermal softening was established to describe the hot tensile behavior of the GH3230 alloy double-sheet. Compared to Johnson-Cook model and Hensel-Spittle model, this model has the highest predicting accuracy. The average absolute relative error of true stress between the experimental and the predicted is only 2.35%.

2.
Materials (Basel) ; 14(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673257

RESUMO

TiB crystal whiskers (TiBw) can be synthesized in situ in Ti alloy matrix through powder metallurgy for the preparation of a new type of ceramic fiber-reinforced Ti matrix composite (TMC) TiBw/Ti-6Al-4V. In the TiBw/Ti-6Al-4V TMC, the reinforced phase/matrix interface is clean and has superior comprehensive mechanical properties, but its machinability is degraded. Hence, the bonding of reliable materials is important. To further optimize the TiBw/Ti-6Al-4V brazing technology and determine the relationship between the microstructure and tensile property of the brazed joint, results demonstrate that the elements of brazing filler metal are under sufficient and uniform diffusion, the microstructure is the typical Widmanstätten structure, and fine granular compounds in ß phase are observed. The average tensile strength of the brazing specimen is 998 MPa under room temperature, which is 97.3% of that of the base metal. During the high-temperature (400 °C) tensile process, a fracture occurred at the base metal of the highest tensile test specimen with strength reaching 689 MPa, and the tensile fracture involved a combination of intergranular and transgranular modes at both room temperature and 400 °C. The fracture surface has dimples, secondary cracks are generated by the fracture of TiB whiskers, and large holes form when whole TiB whiskers are removed. The proposed algorithm provides evidence for promoting the application of TiBw/Ti-6Al-4V TMCs in practical production.

3.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722173

RESUMO

To solve the problem of poor weldability between TiAl-based and Ti2AlNb-based alloys, spark plasma diffusion bonding was employed to join a TiAl alloy and a Ti2AlNb alloy with a pure Ti foil as interlayer at 950 °C/10 KN/60 min. After welding, slow cooling was carried out at a rate of 5 °C/min, followed by homogenization at 800 °C for 24 h. The microstructural evolution and elemental migration of the joint were analyzed via a scanning electron microscope equipped with an energy dispersive spectrometer, while the mechanical properties of the joint were assessed via microhardness and tensile tests. The results show that the spark plasma diffusion bonding formed a joint of TiAl/Ti/Ti2AlNb without microcracks or microvoids, while also effectively protecting the base metal. Before heat treatment, the maximum hardness value (401 HV) appeared at the Ti2AlNb/Ti interface, while the minimum hardness value (281 HV) occurred in the TiAl base metal. The tensile strength of the heat-treated joint at room temperature was measured to be up to 454 MPa, with a brittle fracture occurring in the interlayer. The tensile strength of the joint at 650 °C was measured to be up to 538 MPa, with intergranular cracks occurring in the TiAl base metal.

4.
ACS Appl Mater Interfaces ; 9(38): 32859-32867, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28892348

RESUMO

The severe dependence of oxygen reduction reaction (ORR) in fuel cells on platinum (Pt)-based catalysts greatly limits the process of their commercialization. Therefore, developing cost-reasonable non-precious-metal catalysts to replace Pt-based catalysts for ORR is an urgent task. Here, we use the composite of inexpensive polyaniline and superfine polytetrafluoroethylene powder as precursor to synthesize a metal-free N,F-codoped porous carbon catalyst (N,F-Carbon). Results indicate that the N,F-Carbon catalyst obtained at the optimized temperature 1000 °C exhibits almost the same onset (0.97 V vs RHE) and half-wave potential (0.84 V vs RHE) and better durability and higher crossover resistance in alkaline medium compared to commercial 20% Pt/C, which is attributed to the good dispersion of fluorine and nitrogen atoms in the carbon matrix, high specific surface area, and the synergistic effects of fluorine and nitrogen on the polarization of adjacent carbon atoms. This work provides a new strategy for in situ synthesis of N,F-codoped porous carbon as highly efficient metal-free electrocatalyst for ORR in fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA