RESUMO
Metabolic adaption drives microglial inflammatory responses, and lactate shapes immunological and inflammatory states. However, whether lactate was involved in the regulation of microglial inflammatory responses after cerebral ischemia remains unclear. In this study, the expression of iNOS, arginase-1, phosphorylated NF-κB p65 and IκB-α, and HIF-1α in BV2 cells after oxygen-glucose deprivation (OGD) were detected by western blotting and immunofluorescence. The mRNA levels of microglial responsive markers and inflammatory factors were assessed by real-time-qPCR. The effect of lactate-treated BV2 cells on the survival of primary neurons was observed using transwell co-culture. The results showed that the protein levels of iNOS and arginase-1, the ratio of mRNA levels of iNOS/CD206, CD86/Ym1, IL-6/IL-10, TNF-α/IL-10 and the mRNA levels of IL-6 and TNF-α, as well as the protein levels of phosphorylated NF-κB p65 and IκB-α, were increased after OGD. Lactate treatment inhibited the OGD-induced increase in the protein levels of iNOS, phosphorylated NF-κB p65 and IκB-α, as well as iNOS/CD206, CD86/Ym1, IL-6/IL-10, TNF-α/IL-10, IL-6 and TNF-α mRNA levels in BV2 cells, while promoted arginase-1 protein expression as well as IL-10 and TGF-ß mRNA level. Interestingly, lactate activated HIF-1α and the HIF-1α inhibitor YC-1 reversed the effect of lactate on levels of microglial responsive markers and phosphorylated NF-κB p65 and IκB-α in BV2 cells. Moreover, knockdown of HIF-1α by lentivirus-delivered shRNA also reversed the effect of lactate on phosphorylated NF-κB p65 and IκB-α in BV2 cells after OGD. Finally, and importantly, lactate-treated BV2 microglia increased the viability and decreased the apoptosis of neurons after OGD. These findings revealed that lactate inhibited NF-κB pathway and skewed BV2 microglia toward the protective response through activation of HIF-1α after OGD, thereby improving neuronal survival.
Assuntos
NF-kappa B , Oxigênio , NF-kappa B/metabolismo , Oxigênio/metabolismo , Interleucina-10/metabolismo , Microglia/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Arginase/metabolismo , Arginase/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ácido Láctico/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismoRESUMO
Peanut is an oil crop with important economic value that is widely cultivated around the world. It blooms on the ground but bears fruit underground. When the peg penetrates the ground, it enters a dark environment, is subjected to mechanical stress from the soil, and develops into a normal pod. When a newly developed pod emerges from the soil, it turns green and stops growing. It has been reported that both darkness and mechanical stress are necessary for normal pod development. In this study, we investigated changes in gene expression during the reverse process of peg penetration: developmental arrest caused by pod (Pattee 3 pods) excavation. Bagging the aerial pods was used to simulate loss of mechanical pressure, while direct exposure of the aerial pods was used to simulate loss of both mechanical pressure and darkness. After the loss of mechanical stress and darkness, the DEGs were significantly enriched in photosynthesis, photosynthesis-antenna proteins, plant-pathogen interaction, DNA replication, and circadian rhythm pathways. The DNA replication pathway was enriched by down-regulated genes, and the other four pathways were enriched by upregulated genes. Upregulated genes were also significantly enriched in protein ubiquitination and calmodulin-related genes, highlighting the important role of ubiquitination and calcium signaling in pod development. Further analysis of DEGs showed that phytochrome A (Phy A), auxin response factor 9 (IAA9), and mechanosensitive ion channel protein played important roles in geocarpy. The expression of these two genes increased in subterranean pods but decreased in aerial pods. Based on a large number of chloroplast-related genes, calmodulin, kinases, and ubiquitin-related proteins identified in this study, we propose two possible signal transduction pathways involved in peanut geocarpy, namely, one begins in chloroplasts and signals down through phosphorylation, and the other begins during abiotic stress and signals down through calcium signaling, phosphorylation, and ubiquitination. Our study provides valuable information about putative regulatory genes for peanut pod development and contributes to a better understanding of the biological phenomenon of geocarpy.
RESUMO
Auxin-responsive genes AUX/IAA are important during plant growth and development, but there are few relevant reports in peanut. In this study, 44 AhIAA genes were identified from cultivated peanut, of which 31 genes were expressed in seed at varying degrees. AhIAA-3A, AhIAA-16A and AhIAA-15B were up-regulated, while AhIAA-11A, AhIAA-5B and AhIAA-14B were down-regulated with seed development and maturation. The expression patterns of seven genes, AhIAA-1A, AhIAA-4A, AhIAA-10A, AhIAA-20A, AhIAA-1B, AhIAA-4B and AhIAA-19B, were consistent with the change trend of auxin, and expression in late-maturing variety LM was significantly higher than that in early-maturing EM. Furthermore, allelic polymorphism analysis of AhIAA-1A and AhIAA-1B, which were specifically expressed in seeds, showed that three SNP loci in 3'UTR of AhIAA-1A could effectively distinguish the EM- and LM- type germplasm, providing a basis for breeding markers development. Our results offered a comprehensive understanding of Aux/IAA genes in peanut and provided valuable clues for further investigation of the auxin signal transduction pathway and auxin regulation mechanism in peanut.
RESUMO
Peanut (Arachis hypogaea L.) is an important source of oil and food around the world, and the testa color affects its appearance and commercial value. However, few studies focused on the mechanism of pigment formation in peanut testa. In this study, cultivars Shanhua 15 with pink testa and Zhonghua 12 with red testa were used as materials to perform the combined analysis of transcriptome and metabolome. A total of 198 flavonoid metabolites were detected, among which petunidin 3-O-glucoside and cyanidin O-acetylhexoside in Zhonghua12 were 15.23 and 14.72 times higher than those of Shanhua 15 at the R7 stage, revealing the anthocyanins underlying the red testa. Transcriptome analysis showed that there were 6059 and 3153 differentially expressed genes between Shanhua 15 and Zhonghua 12 in different growth periods, respectively. These differentially expressed genes were significantly enriched in the flavonoid biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways. Integrated analysis of transcriptome and metabolome indicated CHS gene (arahy.CM90T6), F3'H genes (arahy. 8F7PE4 and arahy. K8H9R8), and DFR genes (arahy. LDV9QN and arahy. X8EVF3) may be the key functional genes controlling the formation of pink and red testa in peanut. Transcription factors MYB (arahy.A2IWKV, arahy.US2SKM, arahy.SJGE27, arahy.H8DJRL, and arahy.PR7AYB), bHLH (arahy.26781N, arahy.HM1IVV, and arahy.MP3D3D), and WD40 (arahy.L6JJW9) in the biosynthetic pathway of anthocyanin were significantly upregulated in Zhonghua 12 which may be the key regulatory genes in testa pigment formation. This is a comprehensive analysis on flavonoid metabolites and related genes expression in peanut testa, providing reference for revealing the regulatory mechanism of pigment accumulation in peanut testa.
RESUMO
ABSTRACT: Wnt signaling pathway-related WNT2B gene was upregulated in ischemic brain damage. We aimed to assess the contribution of WNT2B genetic variant to ischemic stroke (IS) susceptibility in the Chinese Han population. Five polymorphisms including rs3790606, rs351364, rs3790608, rs12037987, and rs10776752 in WNT2B were genotyped using Agena MassARRAY platform in 476 healthy controls and 501 patients with IS. Odds ratio (OR) and 95% confidence interval (CI) adjusted for age and gender were estimated by logistic regression analysis. Analysis of variance was used to evaluate the association between genotypes of WNT2B variants and blood lipid parameters. Rs12037987 (OR = 1.82, 95% CI: 1.18-2.82, P = 0.007) and rs10776752 (OR = 1.74, 95% CI: 1.13-2.68, P = 0.012) were related to the increased IS susceptibility. Interestingly, rs12037987 (OR = 2.01, P = 0.028) and rs10776752 (OR = 2.02, P = 0.028) had the higher IS risk in the subjects younger than or equal to 65 years. Rs12037987 (OR = 2.70, P = 0.013), rs10776752 (OR = 2.71, P = 0.012), and rs3790606 (OR = 1.89, P = 0.036) manifested an increasing-risk association with IS occurrence in women. Moreover, rs3790606 genotype was related to serum levels of triglyceride (P = 0.008) and total cholesterol (P = 0.001). Our study reported that rs12037987 and rs10776752 were associated with the increased risk for IS in the Chinese Han population. Our findings may be useful for insight into the contribution of WNT2B variants to the complex pathogenesis of IS.
Assuntos
Glicoproteínas/genética , AVC Isquêmico/genética , Polimorfismo de Nucleotídeo Único , Proteínas Wnt/genética , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , AVC Isquêmico/diagnóstico , AVC Isquêmico/etnologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de Risco , Fatores de RiscoRESUMO
GPAT, the rate-limiting enzyme in triacylglycerol (TAG) synthesis, plays an important role in seed oil accumulation. In this study, two AhGPAT9 genes were individually cloned from the A- and B- genomes of peanut, which shared a similarity of 95.65%, with 165 site differences. The overexpression of AhGPAT9 or the knock-down of its gene expression increased or decreased the seed oil content, respectively. Allelic polymorphism analysis was conducted in 171 peanut germplasm, and 118 polymorphic sites in AhGPAT9A formed 64 haplotypes (a1 to a64), while 94 polymorphic sites in AhGPAT9B formed 75 haplotypes (b1 to b75). The haplotype analysis showed that a5, b57, b30 and b35 were elite haplotypes related to high oil content, whereas a7, a14, a48, b51 and b54 were low oil content types. Additionally, haplotype combinations a62/b10, a38/b31 and a43/b36 were associated with high oil content, but a9/b42 was a low oil content haplotype combination. The results will provide valuable clues for breeding new lines with higher seed oil content using hybrid polymerization of high-oil alleles of AhGPAT9A and AhGPAT9B genes.
Assuntos
Alelos , Arachis/enzimologia , Arachis/genética , Genes de Plantas , Glicerol-3-Fosfato O-Aciltransferase/genética , Óleo de Amendoim/metabolismo , Polimorfismo Genético , Cruzamento , Técnicas de Silenciamento de Genes , Haplótipos , Sementes/enzimologia , Sementes/genética , Triglicerídeos/biossínteseRESUMO
Neuroinflammation is critical in the pathogenesis of neurological diseases. Microglial pro-inflammatory (M1) and anti-inflammatory (M2) status determines the outcome of neuroinflammation. Dexmedetomidine exerts anti-inflammatory effects in many neurological conditions. Whether dexmedetomidine functions via modulation of microglia M1/M2 polarization remains to be fully elucidated. In the present study, we investigated the anti-inflammatory effects of dexmedetomidine on the neuroinflammatory cell model and explored the potential mechanism. BV2 cells were stimulated with LPS to establish a neuroinflammatory model. The cell viability was determined with MTT assay. NO levels were assessed using a NO detection kit. The protein levels of IL-10, TNF-α, iNOS, CD206, ERK1/2, and pERK1/2 were quantified using Western blotting. LPS significantly increased pro-inflammatory factors TNF-α and NO, and M1 phenotypic marker iNOS, and decreased anti-inflammatory factor IL-10 and M2 phenotypic marker CD206 in BV2 cells. Furthermore, exposure of BV2 cells to LPS significantly raised pERK1/2 expression. Pretreatment with dexmedetomidine attenuated LPS-elicited changes in p-ERK, iNOS, TNF-α, NO, CD206 and IL-10 levels in BV2 cells. However, co-treatment with dexmedetomidine and LM22B-10, an agonist of ERK, reversed dexmedetomidine-elicited changes in p-ERK, iNOS, TNF-α, NO, CD206 and IL-10 levels in LPS-exposed BV2 cells. We, for the first time, showed that dexmedetomidine increases microglial M2 polarization by inhibiting phosphorylation of ERK1/2, by which it exerts anti-inflammatory effects in BV2 cells.
Assuntos
Anti-Inflamatórios/farmacologia , Polaridade Celular/efeitos dos fármacos , Dexmedetomidina/farmacologia , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios/toxicidade , Linhagem Celular Transformada , Dexmedetomidina/toxicidade , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismoRESUMO
This study evaluates the clinical effectiveness of targeted arterial infusion of verapamil in interventional treatment of primary hepatocellular carcinoma. For this purpose, in 273 patients with middle- or late-stage primary hepatocellular carcinoma, verapamil, IL-2, and chemotherapeutic agents were infused into the target tumor vasculature through femoral artery using Seldinger technique. The medications were infused as serial dilutions, and effectiveness was evaluated after two treatment cycles. Among these 273 patients, 76 cases showed clinical cure or significant improvement, 119 cases improved, 64 cases stabilized, while 14 cases progressed or deteriorated. In 238 patients, KPS score and body weights were stabilized. Regarding side effects, 99 patients (36.3%) developed leukopenia; 160 patients had gastrointestinal reactions (58.6%); 80 patients (29.3%) presented with elevated ALT/AST profile; and 65 cases (23.8%) had pyrexia; however, these side effects abated quickly. No elevations in BUN/Cr and/or allergic reactions were observed. Pre- and post-intervention cardiac function did not change in all the patients. No significant change was observed in ECG. Liver function was also improved after two cycles of treatment. It was concluded that verapamil management via targeted arterial infusion could effectively reverse the multidrug resistance in cancer cells in primary hepatocellular carcinoma patients and therefore enhanced the efficacy of chemotherapy.