Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732238

RESUMO

Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, by muscle and tissue resident immune cells recruits neutrophils and M1 macrophages to the injury and activates satellite cells. These signal cascades lead to highly integrated temporal and spatial control of muscle repair. Despite the therapeutic potential of these factors for improving tissue regeneration after traumatic and chronic injuries, their transcriptional regulation is not well understood. The transcription factor Mohawk (Mkx) functions as a repressor of myogenic differentiation and regulates fiber type specification. Embryonically, Mkx is expressed in all progenitor cells of the musculoskeletal system and is expressed in human and mouse myeloid lineage cells. An analysis of mice deficient for Mkx revealed a delay in postnatal muscle repair characterized by impaired clearance of necrotic fibers and smaller newly regenerated fibers. Further, there was a delay in the expression of inflammatory signals such as Ccl2, Ifnγ, and Tgfß. This was coupled with impaired recruitment of pro-inflammatory macrophages to the site of muscle damage. These studies demonstrate that Mkx plays a critical role in adult skeletal muscle repair that is mediated through the initial activation of the inflammatory response.


Assuntos
Inflamação , Músculo Esquelético , Animais , Humanos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Transplantation ; 106(8): 1538-1547, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34966103

RESUMO

Eosinophils are bone-marrow-derived granulocytes known for their ability to facilitate clearance of parasitic infections and their association with asthma and other inflammatory diseases. The purpose of this review is to discuss the currently available human observational and animal experimental data linking eosinophils to the immunologic response in solid organ transplantation. First, we present observational human studies that demonstrate a link between transplantation and eosinophils yet were unable to define the exact role of this cell population. Next, we describe published experimental models and demonstrate a defined mechanistic role of eosinophils in downregulating the alloimmune response to murine lung transplants. The overall summary of this data suggests that further studies are needed to define the role of eosinophils in multiple solid organ allografts and points to the possibility of manipulating this cell population to improve graft survival.


Assuntos
Transplante de Pulmão , Transplante de Órgãos , Animais , Eosinófilos/fisiologia , Sobrevivência de Enxerto , Humanos , Transplante de Pulmão/efeitos adversos , Camundongos , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA