Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PNAS Nexus ; 3(9): pgae374, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262854

RESUMO

Engineered smart microbes that deliver therapeutic payloads are emerging as treatment modalities, particularly for diseases with links to the gastrointestinal tract. Enterohemorrhagic Escherichia coli (EHEC) is a causative agent of potentially lethal hemolytic uremic syndrome. Given concerns that antibiotic treatment increases EHEC production of Shiga toxin (Stx), which is responsible for systemic disease, novel remedies are needed. EHEC encodes a type III secretion system (T3SS) that injects Tir into enterocytes. Tir inserts into the host cell membrane, exposing an extracellular domain that subsequently binds intimin, one of its outer membrane proteins, triggering the formation of attaching and effacing (A/E) lesions that promote EHEC mucosal colonization. Citrobacter rodentium (Cr), a natural A/E mouse pathogen, similarly requires Tir and intimin for its pathogenesis. Mice infected with Cr(ΦStx2dact), a variant lysogenized with an EHEC-derived phage that produces Stx2dact, develop intestinal A/E lesions and toxin-dependent disease. Stx2a is more closely associated with human disease. By developing an efficient approach to seamlessly modify the C. rodentium genome, we generated Cr_Tir-MEHEC(ΦStx2a), a variant that expresses Stx2a and the EHEC extracellular Tir domain. We found that mouse precolonization with HS-PROT3EcT-TD4, a human commensal E. coli strain (E. coli HS) engineered to efficiently secrete an anti-EHEC Tir nanobody, delayed bacterial colonization and improved survival after challenge with Cr_Tir-MEHEC(ΦStx2a). This study suggests that commensal E. coli engineered to deliver payloads that block essential virulence determinants can be developed as a new means to prevent and potentially treat infections including those due to antibiotic resistant microbes.

2.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131305

RESUMO

Engineered smart microbes that deliver therapeutic payloads are emerging as treatment modalities, particularly for diseases with links to the gastrointestinal tract. Enterohemorrhagic E coli (EHEC) is a causative agent of potentially lethal hemolytic uremic syndrome. Given concerns that antibiotic treatment increases EHEC production of Shiga toxin (Stx), which is responsible for systemic disease, novel remedies are needed. EHEC encodes a type III secretion system (T3SS) that injects Tir into enterocytes. Tir inserts into the host cell membrane, exposing an extracellular domain that subsequently binds intimin, one of its outer membrane proteins, triggering the formation of attaching and effacing (A/E) lesions that promote EHEC mucosal colonization. Citrobacter rodentium (Cr), a natural A/E mouse pathogen, similarly requires Tir and intimin for its pathogenesis. Mice infected with Cr(ΦStx2dact), a variant lysogenized with an EHEC-derived phage that produces Stx2dact, develop intestinal A/E lesions and toxin-dependent disease. Stx2a is more closely associated with human disease. By developing an efficient approach to seamlessly modify the C. rodentium genome, we generated Cr_Tir-MEHEC(ΦStx2a), a variant that expresses Stx2a and the EHEC extracellular Tir domain. We found that mouse pre-colonization with HS-PROT3EcT-TD4, a human commensal E. coli strain (E. coli HS) engineered to efficiently secrete- an anti-EHEC Tir nanobody, delayed bacterial colonization and improved survival after challenge with Cr_Tir-MEHEC(ΦStx2a). This study provides the first evidence to support the efficacy of engineered commensal E. coli to intestinally deliver therapeutic payloads that block essential enteric pathogen virulence determinants, a strategy that may serve as an antibiotic-independent antibacterial therapeutic modality.

4.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37003256

RESUMO

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Assuntos
Microbiota , Infecções Respiratórias , Animais , Feminino , Camundongos , Gravidez , Células Dendríticas , Dieta , Propionatos
5.
Cell Host Microbe ; 31(4): 634-649.e8, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37003258

RESUMO

Drug platforms that enable the directed delivery of therapeutics to sites of diseases to maximize efficacy and limit off-target effects are needed. Here, we report the development of PROT3EcT, a suite of commensal Escherichia coli engineered to secrete proteins directly into their surroundings. These bacteria consist of three modular components: a modified bacterial protein secretion system, the associated regulatable transcriptional activator, and a secreted therapeutic payload. PROT3EcT secrete functional single-domain antibodies, nanobodies (Nbs), and stably colonize and maintain an active secretion system within the intestines of mice. Furthermore, a single prophylactic dose of a variant of PROT3EcT that secretes a tumor necrosis factor-alpha (TNF-α)-neutralizing Nb is sufficient to ablate pro-inflammatory TNF levels and prevent the development of injury and inflammation in a chemically induced model of colitis. This work lays the foundation for developing PROT3EcT as a platform for the treatment of gastrointestinal-based diseases.


Assuntos
Colite , Anticorpos de Domínio Único , Animais , Camundongos , Escherichia coli , Colite/induzido quimicamente , Colite/terapia , Fator de Necrose Tumoral alfa/metabolismo
6.
Trends Pharmacol Sci ; 43(9): 772-786, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232591

RESUMO

Engineered microbes are rapidly being developed for the delivery of therapeutic modalities to sites of disease. Escherichia coli Nissle 1917 (EcN), a genetically tractable probiotic with a well-established human safety record, is emerging as a favored chassis. Here, we summarize the latest progress in rationally engineered variants of EcN for the treatment of infectious diseases, metabolic disorders, and inflammatory bowel diseases (IBDs) when administered orally, as well as cancers when injected directly into tumors or the systemic circulation. We also discuss emerging studies that raise potential safety concerns regarding these EcN-based strains as therapeutics due to their secretion of a genotoxic colibactin that can promote the formation of DNA double-stranded breaks in mammalian DNA.


Assuntos
Doenças Inflamatórias Intestinais , Probióticos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mamíferos , Probióticos/uso terapêutico
7.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860143

RESUMO

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Assuntos
Asma/imunologia , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Asma/metabolismo , Asma/fisiopatologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL
8.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
9.
Front Cell Dev Biol ; 9: 737880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631716

RESUMO

Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.

11.
PLoS Pathog ; 16(7): e1008651, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658914

RESUMO

Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling.


Assuntos
Remodelação das Vias Aéreas/imunologia , Proteína HMGB1/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Músculo Liso/imunologia , Animais , Camundongos , Músculo Liso/patologia , Receptor para Produtos Finais de Glicação Avançada/imunologia
12.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105156

RESUMO

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Assuntos
Bronquiolite/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína HMGB1/metabolismo , Necroptose , Mucosa Respiratória/citologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Animais , Pré-Escolar , Humanos , Lactente , Camundongos , Estudos Prospectivos
13.
Mucosal Immunol ; 13(4): 652-664, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32066837

RESUMO

The type-2 inflammatory response that promotes asthma pathophysiology occurs in the absence of sufficient immunoregulation. Impaired regulatory T cell (Treg) function also predisposes to severe viral bronchiolitis in infancy, a major risk factor for asthma. Hence, we hypothesized that long-lived, aberrantly programmed Tregs causally link viral bronchiolitis with later asthma. Here we found that transient plasmacytoid dendritic cell (pDC) depletion during viral infection in early-life, which causes the expansion of aberrant Tregs, predisposes to allergen-induced or virus-induced asthma in later-life, and is associated with altered airway epithelial cell (AEC) responses and the expansion of impaired, long-lived Tregs. Critically, the adoptive transfer of aberrant Tregs (unlike healthy Tregs) to asthma-susceptible mice failed to prevent the development of viral-induced or allergen-induced asthma. Lack of protection was associated with increased airway epithelial cytoplasmic-HMGB1 (high-mobility group box 1), a pro-type-2 inflammatory alarmin, and granulocytic inflammation. Aberrant Tregs expressed lower levels of CD39, an ectonucleotidase that hydrolyzes extracellular ATP, a known inducer of alarmin release. Using cultured mouse AECs, we identify that healthy Tregs suppress allergen-induced HMGB1 translocation whereas this ability is markedly impaired in aberrant Tregs. Thus, defective Treg programming in infancy has durable consequences that underlie the association between bronchiolitis and subsequent asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Bronquiolite/etiologia , Bronquiolite/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Animais , Asma/patologia , Biomarcadores , Bronquiolite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Proteína HMGB1/metabolismo , Imunização , Camundongos , Transporte Proteico , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
mBio ; 9(5)2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301858

RESUMO

Several genome-wide screens have been conducted to identify host cell factors involved in the pathogenesis of bacterial pathogens whose virulence is dependent on type III secretion systems (T3SSs), nanomachines responsible for the translocation of proteins into host cells. In the most recent of these, Pacheco et al. (mBio 9:e01003-18, 2018, http://mbio.asm.org/content/9/3/e01003-18.full) screened a genome-wide CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats with Cas9) knockout library for host proteins involved in the pathogenesis of enterohemorrhagic Escherichia coli (EHEC). Their study revealed an unrecognized link between EHEC's two major virulence determinants (its T3SS and Shiga toxins). We discuss these findings in light of data from three other genome-wide screens. Each of these studies uncovered multiple host cell determinants, which curiously share little to no overlap but primarily are involved in mediating early interactions between T3SSs and host cells. We therefore consider how each screen was performed, the advantages and disadvantages of each, and how follow-up studies might be designed to address these issues.


Assuntos
Escherichia coli Êntero-Hemorrágica/genética , Toxina Shiga , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas de Secreção Tipo III , Fatores de Virulência
15.
Sci Transl Med ; 10(440)2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743346

RESUMO

Prostaglandin D2 (PGD2) signals through PGD2 receptor 2 (DP2, also known as CRTH2) on type 2 effector cells to promote asthma pathogenesis; however, little is known about its role during respiratory syncytial virus (RSV) bronchiolitis, a major risk factor for asthma development. We show that RSV infection up-regulated hematopoietic prostaglandin D synthase expression and increased PGD2 release by cultured human primary airway epithelial cells (AECs). Moreover, PGD2 production was elevated in nasopharyngeal samples from young infants hospitalized with RSV bronchiolitis compared to healthy controls. In a neonatal mouse model of severe viral bronchiolitis, DP2 antagonism decreased viral load, immunopathology, and morbidity and ablated the predisposition for subsequent asthma onset in later life. This protective response was abolished upon dual DP1/DP2 antagonism and replicated with a specific DP1 agonist. Rather than mediating an effect via type 2 inflammation, the beneficial effects of DP2 blockade or DP1 agonism were associated with increased interferon-λ (IFN-λ) [interleukin-28A/B (IL-28A/B)] expression and were lost upon IL-28A neutralization. In RSV-infected AEC cultures, DP1 activation up-regulated IFN-λ production, which, in turn, increased IFN-stimulated gene expression, accelerating viral clearance. Our findings suggest that DP2 antagonists or DP1 agonists may be useful antivirals for the treatment of viral bronchiolitis and possibly as primary preventatives for asthma.


Assuntos
Bronquiolite Viral/metabolismo , Bronquiolite Viral/patologia , Interferon gama/biossíntese , Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Alérgenos , Animais , Animais Recém-Nascidos , Antivirais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Imunidade , Lactente , Inflamação/patologia , Inflamação/virologia , Oxirredutases Intramoleculares/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos BALB C , Vírus da Pneumonia Murina , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/fisiologia , Regulação para Cima
16.
J Allergy Clin Immunol ; 141(5): 1607-1619.e9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28947081

RESUMO

BACKGROUND: Rhinovirus infection triggers acute asthma exacerbations. IL-33 is an instructive cytokine of type 2 inflammation whose expression is associated with viral load during experimental rhinovirus infection of asthmatic patients. OBJECTIVE: We sought to determine whether anti-IL-33 therapy is effective during disease progression, established disease, or viral exacerbation using a preclinical model of chronic asthma and in vitro human primary airway epithelial cells (AECs). METHODS: Mice were exposed to pneumonia virus of mice and cockroach extract in early and later life and then challenged with rhinovirus to model disease onset, progression, and chronicity. Interventions included anti-IL-33 or dexamethasone at various stages of disease. AECs were obtained from asthmatic patients and healthy subjects and treated with anti-IL-33 after rhinovirus infection. RESULTS: Anti-IL-33 decreased type 2 inflammation in all phases of disease; however, the ability to prevent airway smooth muscle growth was lost after the progression phase. After the chronic phase, IL-33 levels were persistently high, and rhinovirus challenge exacerbated the type 2 inflammatory response. Treatment with anti-IL-33 or dexamethasone diminished exacerbation severity, and anti-IL-33, but not dexamethasone, promoted antiviral interferon expression and decreased viral load. Rhinovirus replication was higher and IFN-λ levels were lower in AECs from asthmatic patients compared with those from healthy subjects. Anti-IL-33 decreased rhinovirus replication and increased IFN-λ levels at the gene and protein levels. CONCLUSION: Anti-IL-33 or dexamethasone suppressed the magnitude of type 2 inflammation during a rhinovirus-induced acute exacerbation; however, only anti-IL-33 boosted antiviral immunity and decreased viral replication. The latter phenotype was replicated in rhinovirus-infected human AECs, suggesting that anti-IL-33 therapy has the additional benefit of enhancing host defense.


Assuntos
Antivirais/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Inflamação/imunologia , Interleucina-33/imunologia , Vírus da Pneumonia Murina/efeitos dos fármacos , Vírus da Pneumonia Murina/imunologia , Animais , Antivirais/imunologia , Asma/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamação/tratamento farmacológico , Inflamação/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pneumovirus/tratamento farmacológico , Infecções por Pneumovirus/imunologia , Infecções por Pneumovirus/virologia , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
17.
J Exp Med ; 215(2): 537-557, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273643

RESUMO

Respiratory syncytial virus-bronchiolitis is a major independent risk factor for subsequent asthma, but the causal mechanisms remain obscure. We identified that transient plasmacytoid dendritic cell (pDC) depletion during primary Pneumovirus infection alone predisposed to severe bronchiolitis in early life and subsequent asthma in later life after reinfection. pDC depletion ablated interferon production and increased viral load; however, the heightened immunopathology and susceptibility to subsequent asthma stemmed from a failure to expand functional neuropilin-1+ regulatory T (T reg) cells in the absence of pDC-derived semaphorin 4a (Sema4a). In adult mice, pDC depletion predisposed to severe bronchiolitis only after antibiotic treatment. Consistent with a protective role for the microbiome, treatment of pDC-depleted neonates with the microbial-derived metabolite propionate promoted Sema4a-dependent T reg cell expansion, ameliorating both diseases. In children with viral bronchiolitis, nasal propionate levels were decreased and correlated with an IL-6high/IL-10low microenvironment. We highlight a common but age-related Sema4a-mediated pathway by which pDCs and microbial colonization induce T reg cell expansion to protect against severe bronchiolitis and subsequent asthma.


Assuntos
Asma/prevenção & controle , Bronquiolite Viral/prevenção & controle , Células Dendríticas/imunologia , Semaforinas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Animais Recém-Nascidos , Asma/imunologia , Bronquiolite Viral/etiologia , Bronquiolite Viral/imunologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Ácidos Graxos Voláteis/imunologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Humanos , Interleucina-10/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota/imunologia , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/imunologia , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/imunologia , Semaforinas/antagonistas & inibidores , Linfócitos T Reguladores/citologia
18.
Front Immunol ; 8: 1351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118754

RESUMO

Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70-80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV.

19.
Sci Rep ; 7(1): 2353, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539639

RESUMO

Respiratory syncytial virus (RSV)-bronchiolitis is a major cause of infant morbidity and mortality and a risk factor for subsequent asthma. We showed previously that toll-like receptor (TLR)7 in plasmacytoid dendritic cells (pDCs) is critical for protection against bronchiolitis and asthma in mice infected with pneumonia virus of mice (PVM), the mouse homolog of RSV. This lack of redundancy was unexpected as interferon-ß promotor stimulator-1 (IPS-1) signalling, downstream of RIG-I-like receptor (RLR) and not TLR7 activation, contributes to host defence in hRSV-inoculated adult mice. To further clarify the role of IPS-1 signalling, we inoculated IPS-1-/- and WT mice with PVM in early-life, and again in later-life, to model the association between bronchiolitis and asthma. IPS-1 deficiency predisposed to severe PVM bronchiolitis, characterised by neutrophilic inflammation and necroptotic airway epithelial cell death, high mobility group box 1 (HMGB1) and IL-33 release, and downstream type-2 inflammation. Secondary infection induced an eosinophilic asthma-like pathophysiology in IPS-1-/- but not WT mice. Mechanistically, we identified that IPS-1 is necessary for pDC recruitment, IFN-α production and viral control. Our findings suggest that TLR7 and RLR signalling work collaboratively to optimally control the host response to pneumovirus infection thereby protecting against viral bronchiolitis and subsequent asthma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Asma/metabolismo , Bronquiolite/metabolismo , Vírus da Pneumonia Murina/fisiologia , Infecções por Pneumovirus/virologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Asma/genética , Bronquiolite/genética , Proteína DEAD-box 58/metabolismo , Células Dendríticas/metabolismo , Interações Hospedeiro-Patógeno , Interferon-alfa/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Pneumovirus/genética , Infecções por Pneumovirus/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo
20.
Front Immunol ; 8: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261214

RESUMO

Severe viral lower respiratory infections are a major cause of infant morbidity. In developing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, whereas in developed nations the disease represents a major risk factor for subsequent asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene-environmental interactions that affect the host response to RSV infection. Emerging evidence suggests that the excessive inflammatory response and ensuing immunopathology, typically as a consequence of insufficient immunoregulation, leads to long-term changes in immune cells and structural cells that render the host susceptible to subsequent environmental incursions. Thus, the initial host response to RSV may represent a tipping point in the balance between long-term respiratory health or chronic disease (e.g., asthma). The composition and diversity of the microbiota, which in humans stabilizes in the first year of life, critically affects the development and function of the immune system. Hence, perturbations to the maternal and/or infant microbiota are likely to have a profound impact on the host response to RSV and susceptibility to childhood asthma. Here, we review recent insights describing the effects of the microbiota on immune system homeostasis and respiratory disease and discuss the environmental factors that promote microbial dysbiosis in infancy. Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral bronchiolitis as a strategy to prevent the onset and development of asthma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA