Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879639

RESUMO

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Assuntos
Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro/uso terapêutico , alfa-Galactosidase/genética , Animais , Modelos Animais de Doenças , Endocitose , Terapia de Reposição de Enzimas , Terapia Genética , Humanos , Lipídeos/química , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/farmacocinética , Distribuição Tecidual , Triexosilceramidas/metabolismo
2.
Mol Ther Nucleic Acids ; 15: 1-11, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30785039

RESUMO

mRNA vaccines have the potential to tackle many unmet medical needs that are unable to be addressed with conventional vaccine technologies. A potent and well-tolerated delivery technology is integral to fully realizing the potential of mRNA vaccines. Pre-clinical and clinical studies have demonstrated that mRNA delivered intramuscularly (IM) with first-generation lipid nanoparticles (LNPs) generates robust immune responses. Despite progress made over the past several years, there remains significant opportunity for improvement, as the most advanced LNPs were designed for intravenous (IV) delivery of siRNA to the liver. Here, we screened a panel of proprietary biodegradable ionizable lipids for both expression and immunogenicity in a rodent model when administered IM. A subset of compounds was selected and further evaluated for tolerability, immunogenicity, and expression in rodents and non-human primates (NHPs). A lead formulation was identified that yielded a robust immune response with improved tolerability. More importantly for vaccines, increased innate immune stimulation driven by LNPs does not equate to increased immunogenicity, illustrating that mRNA vaccine tolerability can be improved without affecting potency.

3.
Mol Ther ; 26(6): 1509-1519, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653760

RESUMO

The success of mRNA-based therapies depends on the availability of a safe and efficient delivery vehicle. Lipid nanoparticles have been identified as a viable option. However, there are concerns whether an acceptable tolerability profile for chronic dosing can be achieved. The efficiency and tolerability of lipid nanoparticles has been attributed to the amino lipid. Therefore, we developed a new series of amino lipids that address this concern. Clear structure-activity relationships were developed that resulted in a new amino lipid that affords efficient mRNA delivery in rodent and primate models with optimal pharmacokinetics. A 1-month toxicology evaluation in rat and non-human primate demonstrated no adverse events with the new lipid nanoparticle system. Mechanistic studies demonstrate that the improved efficiency can be attributed to increased endosomal escape. This effort has resulted in the first example of the ability to safely repeat dose mRNA-containing lipid nanoparticles in non-human primate at therapeutically relevant levels.


Assuntos
Lipídeos/química , Nanopartículas/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Animais , Primatas , Ratos
4.
Vet Pathol ; 55(2): 341-354, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29191134

RESUMO

The pharmacology, pharmacokinetics, and safety of modified mRNA formulated in lipid nanoparticles (LNPs) were evaluated after repeat intravenous infusion to rats and monkeys. In both species, modified mRNA encoding the protein for human erythropoietin (hEPO) had predictable and consistent pharmacologic and toxicologic effects. Pharmacokinetic analysis conducted following the first dose showed that measured hEPO levels were maximal at 6 hours after the end of intravenous infusion and in excess of 100-fold the anticipated efficacious exposure (17.6 ng/ml) at the highest dose tested.24 hEPO was pharmacologically active in both the rat and the monkey, as indicated by a significant increase in red blood cell mass parameters. The primary safety-related findings were caused by the exaggerated pharmacology of hEPO and included increased hematopoiesis in the liver, spleen, and bone marrow (rats) and minimal hemorrhage in the heart (monkeys). Additional primary safety-related findings in the rat included mildly increased white blood cell counts, changes in the coagulation parameters at all doses, as well as liver injury and release of interferon γ-inducible protein 10 in high-dose groups only. In the monkey, as seen with the parenteral administration of cationic LNPs, splenic necrosis and lymphocyte depletion were observed, accompanied with mild and reversible complement activation. These findings defined a well-tolerated dose level above the anticipated efficacious dose. Overall, these combined studies indicate that LNP-formulated modified mRNA can be administered by intravenous infusion in 2 toxicologically relevant test species and generate supratherapeutic levels of protein (hEPO) in vivo.


Assuntos
Lipídeos/efeitos adversos , Nanopartículas/efeitos adversos , RNA Mensageiro/administração & dosagem , Animais , Coagulação Sanguínea/efeitos dos fármacos , Eritropoetina/genética , Feminino , Hematopoese/efeitos dos fármacos , Infusões Intravenosas/veterinária , Contagem de Leucócitos/veterinária , Macaca fascicularis , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA