Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Public Health ; 114(10): 1071-1080, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39052959

RESUMO

Mortality surveillance systems can have limitations, including reporting delays, incomplete reporting, missing data, and insufficient detail on important risk or sociodemographic factors that can impact the accuracy of estimates of current trends, disease severity, and related disparities across subpopulations. The Centers for Disease Control and Prevention used multiple data systems during the COVID-19 emergency response-line-level case‒death surveillance, aggregate death surveillance, and the National Vital Statistics System-to collectively provide more comprehensive and timely information on COVID-19‒associated mortality necessary for informed decisions. This article will review in detail the line-level, aggregate, and National Vital Statistics System surveillance systems and the purpose and use of each. This retrospective review of the hybrid surveillance systems strategy may serve as an example for adaptive informational approaches needed over the course of future public health emergencies. (Am J Public Health. 2024;114(10):1071-1080. https://doi.org/10.2105/AJPH.2024.307743).


Assuntos
COVID-19 , Centers for Disease Control and Prevention, U.S. , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estados Unidos/epidemiologia , SARS-CoV-2 , Vigilância da População/métodos , Pandemias/prevenção & controle , Estatísticas Vitais , Estudos Retrospectivos
2.
Emerg Infect Dis ; 30(6): 1144-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781926

RESUMO

Few precise estimates of hospitalization and fatality rates from COVID-19 exist for naive populations, especially within demographic subgroups. We estimated rates among persons with SARS-CoV-2 infection in the United States during May 1-December 1, 2020, before vaccines became available. Both rates generally increased with age; fatality rates were highest for persons >85 years of age (24%) and lowest for children 1-14 years of age (0.01%). Age-adjusted case hospitalization rates were highest for African American or Black, not Hispanic persons (14%), and case-fatality rates were highest for Asian or Pacific Islander, not Hispanic persons (4.4%). Eighteen percent of hospitalized patients and 44.2% of those admitted to an intensive care unit died. Male patients had higher hospitalization (6.2% vs. 5.2%) and fatality rates (1.9% vs. 1.5%) than female patients. These findings highlight the importance of collecting surveillance data to devise appropriate control measures for persons in underserved racial/ethnic groups and older adults.


Assuntos
COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , Hospitalização/estatística & dados numéricos , Masculino , Feminino , Adolescente , Idoso , Criança , Pré-Escolar , Pessoa de Meia-Idade , Adulto , Lactente , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Adulto Jovem , Recém-Nascido , Vacinas contra COVID-19/administração & dosagem , Etnicidade/estatística & dados numéricos
3.
PLoS One ; 18(9): e0291678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729332

RESUMO

BACKGROUND: SARS-CoV-2 Omicron variants have the potential to impact vaccine effectiveness and duration of vaccine-derived immunity. We analyzed U.S. multi-jurisdictional COVID-19 vaccine breakthrough surveillance data to examine potential waning of protection against SARS-CoV-2 infection for the Pfizer-BioNTech (BNT162b) primary vaccination series by age. METHODS: Weekly numbers of SARS-CoV-2 infections during January 16, 2022-May 28, 2022 were analyzed by age group from 22 U.S. jurisdictions that routinely linked COVID-19 case surveillance and immunization data. A life table approach incorporating line-listed and aggregated COVID-19 case datasets with vaccine administration and U.S. Census data was used to estimate hazard rates of SARS-CoV-2 infections, hazard rate ratios (HRR) and percent reductions in hazard rate comparing unvaccinated people to people vaccinated with a Pfizer-BioNTech primary series only, by age group and time since vaccination. RESULTS: The percent reduction in hazard rates for persons 2 weeks after vaccination with a Pfizer-BioNTech primary series compared with unvaccinated persons was lowest among children aged 5-11 years at 35.5% (95% CI: 33.3%, 37.6%) compared to the older age groups, which ranged from 68.7%-89.6%. By 19 weeks after vaccination, all age groups showed decreases in the percent reduction in the hazard rates compared with unvaccinated people; with the largest declines observed among those aged 5-11 and 12-17 years and more modest declines observed among those 18 years and older. CONCLUSIONS: The decline in vaccine protection against SARS-CoV-2 infection observed in this study is consistent with other studies and demonstrates that national case surveillance data were useful for assessing early signals in age-specific waning of vaccine protection during the initial period of SARS-CoV-2 Omicron variant predominance. The potential for waning immunity during the Omicron period emphasizes the importance of continued monitoring and consideration of optimal timing and provision of booster doses in the future.


Assuntos
COVID-19 , Vacinas , Criança , Humanos , Idoso , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Tábuas de Vida , SARS-CoV-2
4.
Public Health Rep ; 138(3): 428-437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960828

RESUMO

Early during the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) leveraged an existing surveillance system infrastructure to monitor COVID-19 cases and deaths in the United States. Given the time needed to report individual-level (also called line-level) COVID-19 case and death data containing detailed information from individual case reports, CDC designed and implemented a new aggregate case surveillance system to inform emergency response decisions more efficiently, with timelier indicators of emerging areas of concern. We describe the processes implemented by CDC to operationalize this novel, multifaceted aggregate surveillance system for collecting COVID-19 case and death data to track the spread and impact of the SARS-CoV-2 virus at national, state, and county levels. We also review the processes established to acquire, process, and validate the aggregate number of cases and deaths due to COVID-19 in the United States at the county and jurisdiction levels during the pandemic. These processes include time-saving tools and strategies implemented to collect and validate authoritative COVID-19 case and death data from jurisdictions, such as web scraping to automate data collection and algorithms to identify and correct data anomalies. This topical review highlights the need to prepare for future emergencies, such as novel disease outbreaks, by having an event-agnostic aggregate surveillance system infrastructure in place to supplement line-level case reporting for near-real-time situational awareness and timely data.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Surtos de Doenças , Centers for Disease Control and Prevention, U.S.
5.
PLoS One ; 17(12): e0276409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490304

RESUMO

BACKGROUND: In the United States, national ecological studies suggest a positive impact of COVID-19 vaccination coverage on outcomes in adults. However, the national impact of the vaccination program on COVID-19 in children remains unknown. To determine the association of COVID-19 vaccination with U.S. case incidence, emergency department visits, and hospital admissions for pediatric populations during the Delta and Omicron periods. METHODS: We conducted an ecological analysis among children aged 5-17 and compared incidence rate ratios (RRs) of COVID-19 cases, emergency department visits, and hospital admissions by pediatric vaccine coverage, with jurisdictions in the highest vaccine coverage quartile as the reference. RESULTS: RRs comparing states with lowest pediatric vaccination coverage to the highest pediatric vaccination coverage were 2.00 and 0.64 for cases, 2.96 and 1.11 for emergency department visits, and 2.76 and 1.01 for hospital admissions among all children during the Delta and Omicron periods, respectively. During the 3-week peak period of the Omicron wave, only children aged 12-15 and 16-17 years in the states with the lowest versus highest coverage, had a significantly higher rate of emergency department visits (RR = 1.39 and RR = 1.34, respectively). CONCLUSIONS: COVID-19 vaccines were associated with lower case incidence, emergency department visits and hospital admissions among children during the Delta period but the association was weaker during the Omicron period. Pediatric COVID-19 vaccination should be promoted as part of a program to decrease COVID-19 impact among children; however, vaccine effectiveness may be limited when available vaccines do not match circulating viral variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Estados Unidos/epidemiologia , Humanos , Criança , Incidência , COVID-19/epidemiologia , COVID-19/prevenção & controle , Serviço Hospitalar de Emergência , Hospitais
6.
Open Forum Infect Dis ; 9(3): ofac044, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35198651

RESUMO

BACKGROUND: Case-based surveillance of pediatric coronavirus disease 2019 (COVID-19) cases underestimates the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among children and adolescents. Our objectives were to estimate monthly SARS-CoV-2 antibody seroprevalence and calculate ratios of SARS-CoV-2 infections to reported COVID-19 cases among children and adolescents in 8 US states. METHODS: Using data from the Nationwide Commercial Laboratory Seroprevalence Survey, we estimated monthly SARS-CoV-2 antibody seroprevalence among children aged 0-17 years from August 2020 through May 2021. We calculated and compared cumulative incidence of SARS-CoV-2 infection extrapolated from population-standardized seroprevalence of antibodies to SARS-CoV-2, cumulative COVID-19 case reports since March 2020, and infection-to-case ratios among persons of all ages and children aged 0-17 years for each state. RESULTS: Of 41 583 residual serum specimens tested, children aged 0-4, 5-11, and 12-17 years accounted for 1619 (3.9%), 10 507 (25.3%), and 29 457 (70.8%), respectively. Median SARS-CoV-2 antibody seroprevalence among children increased from 8% (range, 6%-20%) in August 2020 to 37% (range, 26%-44%) in May 2021. Estimated ratios of SARS-CoV-2 infections to reported COVID-19 cases in May 2021 ranged by state from 4.7-8.9 among children and adolescents to 2.2-3.9 for all ages combined. CONCLUSIONS: Through May 2021 in selected states, the majority of children with serum specimens included in serosurveys did not have evidence of prior SARS-CoV-2 infection. Case-based surveillance underestimated the number of children infected with SARS-CoV-2 more than among all ages. Continued monitoring of pediatric SARS-CoV-2 antibody seroprevalence should inform prevention and vaccination strategies.

7.
MMWR Morb Mortal Wkly Rep ; 71(4): 132-138, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35085223

RESUMO

Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status† indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended§ additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged ≥18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),¶ case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and ≥65 years. Eligible persons should stay up to date with COVID-19 vaccinations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/prevenção & controle , Imunização Secundária , SARS-CoV-2/imunologia , Eficácia de Vacinas , Adulto , Idoso , Humanos , Incidência , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
8.
NEJM Evid ; 1(3)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37207114

RESUMO

BACKGROUND: With the emergence of the delta variant, the United States experienced a rapid increase in Covid-19 cases in 2021. We estimated the risk of breakthrough infection and death by month of vaccination as a proxy for waning immunity during a period of delta variant predominance. METHODS: Covid-19 case and death data from 15 U.S. jurisdictions during January 3 to September 4, 2021 were used to estimate weekly hazard rates among fully vaccinated persons, stratified by age group and vaccine product. Case and death rates during August 1 to September 4, 2021 were presented across four cohorts defined by month of vaccination. Poisson models were used to estimate adjusted rate ratios comparing the earlier cohorts to July rates. RESULTS: During August 1 to September 4, 2021, case rates per 100,000 person-weeks among all vaccine recipients for the January to February, March to April, May to June, and July cohorts were 168.8 (95% confidence interval [CI], 167.5 to 170.1), 123.5 (95% CI, 122.8 to 124.1), 83.6 (95% CI, 82.9 to 84.3), and 63.1 (95% CI, 61.6 to 64.6), respectively. Similar trends were observed by age group for BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccine recipients. Rates for the Ad26.COV2.S (Janssen-Johnson & Johnson) vaccine were higher; however, trends were inconsistent. BNT162b2 vaccine recipients 65 years of age or older had higher death rates among those vaccinated earlier in the year. Protection against death was sustained for the mRNA-1273 vaccine recipients. Across age groups and vaccine types, people who were vaccinated 6 months ago or longer (January-February) were 3.44 (3.36 to 3.53) times more likely to be infected and 1.70 (1.29 to 2.23) times more likely to die from COVID-19 than people vaccinated recently in July 2021. CONCLUSIONS: Our study suggests that protection from SARS-CoV-2 infection among all ages or death among older adults waned with increasing time since vaccination during a period of delta predominance. These results add to the evidence base that supports U.S. booster recommendations, especially for older adults vaccinated with BNT162b2 and recipients of the Ad26.COV2.S vaccine. (Funded by the Centers for Disease Control and Prevention.).

9.
Lancet ; 399(10320): 152-160, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34741818

RESUMO

BACKGROUND: In the USA, COVID-19 vaccines became available in mid-December, 2020, with adults aged 65 years and older among the first groups prioritised for vaccination. We estimated the national-level impact of the initial phases of the US COVID-19 vaccination programme on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 65 years and older. METHODS: We analysed population-based data reported to US federal agencies on COVID-19 cases, emergency department visits, hospital admissions, and deaths among adults aged 50 years and older during the period Nov 1, 2020, to April 10, 2021. We calculated the relative change in incidence among older age groups compared with a younger reference group for pre-vaccination and post-vaccination periods, defined by the week when vaccination coverage in a given age group first exceeded coverage in the reference age group by at least 1%; time lags for immune response and time to outcome were incorporated. We assessed whether the ratio of these relative changes differed when comparing the pre-vaccination and post-vaccination periods. FINDINGS: The ratio of relative changes comparing the change in the COVID-19 case incidence ratio over the post-vaccine versus pre-vaccine periods showed relative decreases of 53% (95% CI 50 to 55) and 62% (59 to 64) among adults aged 65 to 74 years and 75 years and older, respectively, compared with those aged 50 to 64 years. We found similar results for emergency department visits with relative decreases of 61% (52 to 68) for adults aged 65 to 74 years and 77% (71 to 78) for those aged 75 years and older compared with adults aged 50 to 64 years. Hospital admissions declined by 39% (29 to 48) among those aged 60 to 69 years, 60% (54 to 66) among those aged 70 to 79 years, and 68% (62 to 73), among those aged 80 years and older, compared with adults aged 50 to 59 years. COVID-19 deaths also declined (by 41%, 95% CI -14 to 69 among adults aged 65-74 years and by 30%, -47 to 66 among those aged ≥75 years, compared with adults aged 50 to 64 years), but the magnitude of the impact of vaccination roll-out on deaths was unclear. INTERPRETATION: The initial roll-out of the US COVID-19 vaccination programme was associated with reductions in COVID-19 cases, emergency department visits, and hospital admissions among older adults. FUNDING: None.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Mortalidade/tendências , Admissão do Paciente/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Feminino , Hospitais , Humanos , Incidência , Masculino , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricos
10.
Public Health Rep ; 136(1_suppl): 9S-17S, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34726972

RESUMO

Federal and state enforcement authorities have increasingly intervened on the criminal overprescribing of opioids. However, little is known about the health effects these enforcement actions have on patients experiencing disrupted access to prescription opioids or medication-assisted treatment/medication for opioid use disorder. Simultaneously, opioid death rates have increased. In response, the Maryland Department of Health (MDH) has worked to coordinate mitigation strategies with enforcement partners (defined as any federal, state, or local enforcement authority or other governmental investigative authority). One strategy is a standardized protocol to implement emergency response functions, including rapidly identifying health hazards with real-time data access, deploying resources locally, and providing credible messages to partners and the public. From January 2018 through October 2019, MDH used the protocol in response to 12 enforcement actions targeting 34 medical professionals. A total of 9624 patients received Schedule II-V controlled substance prescriptions from affected prescribers under investigation in the 6 months before the respective enforcement action; 9270 (96%) patients were residents of Maryland. Preliminary data indicate fatal overdose events and potential loss of follow-up care among the patient population experiencing disrupted health care as a result of an enforcement action. The success of the strategy hinged on endorsement by leadership; the establishment of federal, state, and local roles and responsibilities; and data sharing. MDH's approach, data sources, and lessons learned may support health departments across the country that are interested in conducting similar activities on the front lines of the opioid crisis.


Assuntos
Analgésicos Opioides/efeitos adversos , Defesa Civil/legislação & jurisprudência , Defesa Civil/normas , Direito Penal/tendências , Prescrições de Medicamentos/estatística & dados numéricos , Defesa Civil/estatística & dados numéricos , Direito Penal/legislação & jurisprudência , Humanos , Maryland , Uso Indevido de Medicamentos sob Prescrição/legislação & jurisprudência , Uso Indevido de Medicamentos sob Prescrição/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA