Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920646

RESUMO

Dopaminergic neurons are the predominant brain cells affected in Parkinson's disease. With the limited availability of live human brain dopaminergic neurons to study pathological mechanisms of Parkinson's disease, dopaminergic neurons have been generated from human-skin-cell-derived induced pluripotent stem cells. Originally, induced pluripotent stem-cell-derived dopaminergic neurons were generated using small molecules. These neurons took more than two months to mature. However, the transcription-factor-mediated differentiation of induced pluripotent stem cells has revealed quicker and cheaper methods to generate dopaminergic neurons. In this study, we compared and contrasted three protocols to generate induced pluripotent stem-cell-derived dopaminergic neurons using transcription-factor-mediated directed differentiation. We deviated from the established protocols using lentivirus transduction to stably integrate different transcription factors into the AAVS1 safe harbour locus of induced pluripotent stem cells. We used different media compositions to generate more than 90% of neurons in the culture, out of which more than 85% of the neurons were dopaminergic neurons within three weeks. Therefore, from our comparative study, we reveal that a combination of transcription factors along with small molecule treatment may be required to generate a pure population of human dopaminergic neurons.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição/metabolismo , Lentivirus/genética , Lentivirus/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299369

RESUMO

Absence seizures are associated with generalised synchronous 2.5-4 Hz spike-wave discharges causing brief and sudden alteration of awareness during childhood, which is known as childhood absence epilepsy (CAE). CAE is also associated with impaired learning, psychosocial challenges, and physical danger. Absence seizures arise from disturbances within the cortico-thalamocortical (CTC) network, including dysfunctional feed-forward inhibition (FFI); however, the precise mechanisms remain unclear. In epileptic stargazers, a genetic mouse model of CAE with chronic seizures, levels of γ-aminobutyric acid (GABA), and expression of GABA receptors are altered within the CTC network, implicating altered GABAergic transmission in absence seizures. However, the expression of GABA synthesising enzymes (GAD65 and GAD67) and GABA transporters (GAT-1 and 3) have not yet been characterised within absence seizure models. We found a specific upregulation of GAD65 in the somatosensory cortex but not the thalamus of epileptic stargazer mice. No differences were detected in GAD67 and GAT-3 levels in the thalamus or somatosensory cortex. Then, we assessed if GAD65 upregulation also occurred in Gi-DREADD mice exhibiting acute absence seizures, but we found no change in the expression profiles of GAD65/67 or GAT-3. Thus, the upregulation of GAD65 in stargazers may be a compensatory mechanism in response to long-term dysfunctional FFI and chronic absence seizures.


Assuntos
Glutamato Descarboxilase/metabolismo , Isoformas de Proteínas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Receptores de GABA/metabolismo , Convulsões/metabolismo , Córtex Somatossensorial/metabolismo , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA