Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Mod Plasma Phys ; 7(1): 6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632354

RESUMO

Shear mode Alfvén waves are the carriers of field-aligned currents in the auroral zones of Earth and other planets. These waves travel along the magnetic field lines, coupling the outer magnetosphere with the ionosphere. However, in ideal magnetohydrodynamic (MHD) theory, the shear mode Alfvén wave does not carry a parallel electric field that could accelerate auroral particles. This can be modified by including kinetic effects, which lead to a parallel electric field when the perpendicular wavelength becomes comparable to the electron inertial length or the ion acoustic gyroradius. These small perpendicular wavelengths can be formed by phase mixing, ionospheric feedback, or nonlinear effects. Kinetic Alfvén waves are further constrained by their interaction with the ionosphere, which acts as a reflector for these waves. In addition, the strong plasma gradients in the topside ionosphere form an effective resonator that leads to fluctuations on time scales of seconds. These rapidly changing parallel electric fields can lead to broadband acceleration of auroral electrons, often called the Alfvénic aurora. Such interactions do not only take place in Earth's magnetosphere, but have also been observed in Jupiter's magnetosphere by the Juno satellite.

2.
J Geophys Res Space Phys ; 127(8): e2022JA030334, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247326

RESUMO

The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct "zones", based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3 + cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation.

3.
Science ; 222(4629): 1227-8, 1983 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-17806721
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA