Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21861, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071385

RESUMO

This study evaluates the scale-free network assumption commonly used in COVID-19 epidemiology, using empirical social network data from SARS-CoV-2 Delta variant molecular local clusters in Houston, Texas. We constructed genome-informed social networks from contact and co-residence data, tested them for scale-free power-law distributions that imply highly connected hubs, and compared them to alternative models (exponential, log-normal, power-law with exponential cutoff, and Weibull) that suggest more evenly distributed network connections. Although the power-law model failed the goodness of fit test, after incorporating social network ties, the power-law model was at least as good as, if not better than, the alternatives, implying the presence of both hub and non-hub mechanisms in local SARS-CoV-2 transmission. These findings enhance our understanding of the complex social interactions that drive SARS-CoV-2 transmission, thereby informing more effective public health interventions.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Rede Social , Texas/epidemiologia
2.
Sci Rep ; 13(1): 5571, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019985

RESUMO

A consensus species tree is reconstructed from 11 gene trees for human, bat, and pangolin beta coronaviruses from samples taken early in the pandemic (prior to April 1, 2020). Using coalescent theory, the shallow (short branches relative to the hosts) consensus species tree provides evidence of recent gene flow events between bat and pangolin beta coronaviruses predating the zoonotic transfer to humans. The consensus species tree was also used to reconstruct the ancestral sequence of human SARS-CoV-2, which was 2 nucleotides different from the Wuhan sequence. The time to most recent common ancestor was estimated to be Dec 8, 2019 with a bat origin. Some human, bat, and pangolin coronavirus lineages found in China are phylogenetically distinct, a rare example of a class II phylogeography pattern (Avise et al. in Ann Rev Eco Syst 18:489-422, 1987). The consensus species tree is a product of evolutionary factors, providing evidence of repeated zoonotic transfers between bat and pangolin as a reservoir for future zoonotic transfers to humans.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/genética , Pangolins , Pandemias , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA