Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12605, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131230

RESUMO

Lipid components in the developing kernel of Paeonia ostii were determined, and the fatty acid (FA) distributions in triacylglycerol and phospholipids were characterized. The lipids in the kernel were mainly phospholipids (43%), neutral glycerides (24%), fatty acyls (26%), and sphingolipids (4.5%). The dominant neutral glycerides were TAG and diacylglycerol. The PL components included phosphatidic acid, phosphatidyl glycerol, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, and phosphatidyl ethanolamine. As the kernel developed, the profiles of the molecular species comprising TAG and PL changed, especially during the earlier phases of oil accumulation. During rapid oil accumulation, the abundances of sphingosine-1-phosphate, pyruvic acid, stearic acid, and alpha-linolenic acid changed significantly; the sphingolipid metabolism and unsaturated FAs biosynthesis pathways were significantly enriched in these differentially abundant metabolites. Our results improve our understanding of lipid accumulation in tree peony seeds, and provide a framework for the analysis of lipid metabolisms in other oil crops.


Assuntos
Metabolismo dos Lipídeos/genética , Lipidômica , Paeonia/genética , Transcriptoma/genética , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Paeonia/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
2.
BMC Genomics ; 22(1): 297, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892636

RESUMO

BACKGROUND: Paeonia ostii is a potentially important oilseed crop because its seed yield is high, and the seeds are rich in α-linolenic acid (ALA). However, the molecular mechanisms underlying ALA biosynthesis during seed kernel, seed testa, and fruit pericarp development in this plant are unclear. We used transcriptome data to address this knowledge gap. RESULTS: Gas chromatograph-mass spectrometry indicated that ALA content was highest in the kernel, moderate in the testa, and lowest in the pericarp. Therefore, we used RNA-sequencing to compare ALA synthesis among these three tissues. We identified 227,837 unigenes, with an average length of 755 bp. Of these, 1371 unigenes were associated with lipid metabolism. The fatty acid (FA) biosynthesis and metabolism pathways were significantly enriched during the early stages of oil accumulation in the kernel. ALA biosynthesis was significantly enriched in parallel with increasing ALA content in the testa, but these metabolic pathways were not significantly enriched during pericarp development. By comparing unigene transcription profiles with patterns of ALA accumulation, specific unigenes encoding crucial enzymes and transcription factors (TFs) involved in de novo FA biosynthesis and oil accumulation were identified. Specifically, the bell-shaped expression patterns of genes encoding SAD, FAD2, FAD3, PDCT, PDAT, OLE, CLE, and SLE in the kernel were similar to the patterns of ALA accumulation in this tissue. Genes encoding BCCP, BC, KAS I- III, and FATA were also upregulated during the early stages of oil accumulation in the kernel. In the testa, the upregulation of the genes encoding SAD, FAD2, and FAD3 was followed by a sharp increase in the concentrations of ALA. In contrast, these genes were minimally expressed (and ALA content was low) throughout pericarp development. CONCLUSIONS: We used three tissues with high, moderate, and low ALA concentrations as an exemplar system in which to investigate tissue-specific ALA accumulation mechanisms in P. ostii. The genes and TFs identified herein might be useful targets for future studies of ALA accumulation in the tree peony. This study also provides a framework for future studies of FA biosynthesis in other oilseed plants.


Assuntos
Paeonia , Ácido alfa-Linolênico , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Paeonia/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA