Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Rep Methods ; 2(11): 100340, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452860

RESUMO

Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Transcriptoma/genética , Neoplasias Pancreáticas/diagnóstico , Oncologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
2.
Sci Signal ; 14(709): eabh3839, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784250

RESUMO

Thyroid hormone (TH) action is essential for hepatic lipid synthesis and oxidation. Analysis of hepatocyte-specific thyroid receptor ß1 (TRß1) knockout mice confirmed a role for TH in stimulating de novo lipogenesis and fatty acid oxidation through its nuclear receptor. Specifically, TRß1 and its principal corepressor NCoR1 in hepatocytes repressed de novo lipogenesis, whereas the TH-mediated induction of lipogenic genes depended on the transcription factor ChREBP. Mice with a hepatocyte-specific deficiency in ChREBP lost TH-mediated stimulation of the lipogenic program, which, in turn, impaired the regulation of fatty acid oxidation. TH regulated ChREBP activation and recruitment to DNA, revealing a mechanism by which TH regulates specific signaling pathways. Regulation of the lipogenic pathway by TH through ChREBP was conserved in hepatocytes derived from human induced pluripotent stem cells. These results demonstrate that TH signaling in the liver acts simultaneously to enhance both lipogenesis and fatty acid oxidation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipogênese , Hormônios Tireóideos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lipogênese/genética , Fígado/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo
3.
Mol Metab ; 42: 101086, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992037

RESUMO

OBJECTIVE: Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity. METHODS: We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes. RESULTS: Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFß1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFß1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFß1. CONCLUSIONS: Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFß-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity.


Assuntos
Adipócitos/metabolismo , Obesidade/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/fisiologia , Adipogenia/genética , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Dieta Hiperlipídica , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , PPAR gama/genética , Rosiglitazona/farmacologia , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Cell Metab ; 28(4): 631-643.e3, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30078553

RESUMO

Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fatores Reguladores de Interferon/metabolismo , Miostatina/metabolismo , Condicionamento Físico Animal/fisiologia , Músculo Quadríceps/metabolismo , Adipócitos Marrons/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/metabolismo , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/metabolismo , Miostatina/genética , Consumo de Oxigênio , Músculo Quadríceps/diagnóstico por imagem , Sensação Térmica/fisiologia , Fator de Crescimento Transformador beta/metabolismo
5.
Cell Metab ; 27(5): 1121-1137.e5, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29657031

RESUMO

Beige and brown adipocytes generate heat in response to reductions in ambient temperature. When warmed, both beige and brown adipocytes exhibit morphological "whitening," but it is unknown whether or to what extent this represents a true shift in cellular identity. Using cell-type-specific profiling in vivo, we uncover a unique paradigm of temperature-dependent epigenomic plasticity of beige, but not brown, adipocytes, with conversion from a brown to a white chromatin state. Despite this profound shift in cellular identity, warm whitened beige adipocytes retain an epigenomic memory of prior cold exposure defined by an array of poised enhancers that prime thermogenic genes for rapid response during a second bout of cold exposure. We further show that a transcriptional cascade involving glucocorticoid receptor and Zfp423 can drive warm-induced whitening of beige adipocytes. These studies identify the epigenomic and transcriptional bases of an extraordinary example of cellular plasticity in response to environmental signals.


Assuntos
Adipócitos Bege/citologia , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Plasticidade Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Termogênese/genética , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Interação Gene-Ambiente , Masculino , Camundongos , Camundongos Knockout , Receptores de Glucocorticoides/genética , Fatores de Transcrição/genética
6.
Elife ; 62017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091029

RESUMO

Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Resistência à Insulina , Adipócitos/metabolismo , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout
7.
Neuron ; 96(1): 190-206.e7, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28957668

RESUMO

Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.


Assuntos
Aldosterona/fisiologia , Angiotensina II/fisiologia , Relógios Biológicos/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Sódio/fisiologia , Núcleo Solitário/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Vias Neurais/fisiologia , Núcleos Septais/fisiologia , Sódio/deficiência
8.
Proc Natl Acad Sci U S A ; 114(40): E8458-E8467, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923959

RESUMO

Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRß1-binding site. Moreover, using liver-specific TRß1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRß1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.


Assuntos
Hipotireoidismo/patologia , Fígado/patologia , Mutação , Correpressor 1 de Receptor Nuclear/fisiologia , Receptores beta dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/metabolismo , Acetilação , Animais , Células Cultivadas , Regulação da Expressão Gênica , Histonas/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais
9.
Nat Neurosci ; 20(3): 484-496, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28166221

RESUMO

The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome-wide association study data implicates two previously unknown neuron populations in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.


Assuntos
Núcleo Arqueado do Hipotálamo/anatomia & histologia , Eminência Mediana/anatomia & histologia , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Leptina/fisiologia , Masculino , Eminência Mediana/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Orexinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/fisiologia , Somatostatina/metabolismo
10.
Cell Rep ; 18(4): 1048-1061, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122230

RESUMO

Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce "NuTRAP," a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq) using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.


Assuntos
Epigenômica , Técnicas Genéticas , Transcriptoma , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Imunoprecipitação da Cromatina , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Transgênicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
11.
BMC Syst Biol ; 11(1): 1, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061857

RESUMO

BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate.


Assuntos
Escherichia coli/fisiologia , Mapeamento de Interação de Proteínas , Biologia Computacional , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Fenótipo
12.
G3 (Bethesda) ; 7(1): 129-142, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27856696

RESUMO

Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.


Assuntos
Relógios Circadianos/genética , Redes Reguladoras de Genes/genética , Neurospora crassa/genética , Fatores de Transcrição/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Luz , Neurospora crassa/fisiologia
13.
J Clin Invest ; 126(8): 2839-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27400129

RESUMO

The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.


Assuntos
Tecido Adiposo/imunologia , Inflamação , Resistência à Insulina , Fator Regulador 3 de Interferon/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiposidade , Adulto , Animais , Glicemia/metabolismo , Dieta , Feminino , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
PLoS One ; 11(3): e0152145, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003599

RESUMO

Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Regulon/genética , Fator sigma/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética , Sítios de Ligação/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Regiões Promotoras Genéticas/genética
15.
Nucleic Acids Res ; 44(1): 134-51, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26358810

RESUMO

Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ~200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Bovinos , Imunoprecipitação da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/química , Fatores de Transcrição/genética
16.
Nucleic Acids Res ; 43(11): 5377-93, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25940627

RESUMO

Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria. Chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq) showed that CRP associates with ∼900 DNA binding regions, most of which occur within genes. The most highly enriched binding region was upstream of a putative copper transporter gene (ctpB), and crp-deleted bacteria showed increased sensitivity to copper toxicity. Detailed mutational analysis of four CRP binding sites upstream of the virulence-associated Rv0249c-Rv0247c succinate dehydrogenase genes demonstrated that CRP directly regulates Rv0249c-Rv0247c expression from two promoters, one of which requires sequences intragenic to Rv0250c for maximum expression. The high percentage of intragenic CRP binding sites and our demonstration that these intragenic DNA sequences significantly contribute to biologically relevant gene expression greatly expand the genome space that must be considered for gene regulatory analyses in mycobacteria. These findings also have practical implications for an important bacterial pathogen in which identification of mutations that affect expression of drug target-related genes is widely used for rapid drug resistance screening.


Assuntos
Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Succinato Desidrogenase/genética , Sítios de Ligação , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , Regulon
17.
Genome Res ; 24(10): 1686-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024162

RESUMO

The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed to infer the physical and regulatory details inside the enriched regions. This research extends a previous blind-deconvolution approach to develop a post-peak-calling algorithm that improves binding site resolution and predicts cooperative interactions. At the core of our new method is a physically motivated model that characterizes the binding signal as an extreme value distribution. This model suggests a mathematical framework to study physical properties of DNA shearing from the ChIP-seq coverage. The model explains the ChIP-seq coverage with two signals: The first considers DNA fragments with only a single binding event, whereas the second considers fragments with two binding events (a double-binding signal). The model incorporates motif discovery and is able to detect multiple sites in an enriched region with single-nucleotide resolution, high sensitivity, and high specificity. Our method improves peak caller sensitivity, from less than 45% up to 94%, at a false positive rate < 11% for a set of 47 experimentally validated prokaryotic sites. It also improves resolution of highly enriched regions of large-scale eukaryotic data sets. The double-binding signal provides a novel application in ChIP-seq analysis: the identification of cooperative interaction. Predictions of known cooperative binding sites show a 0.85 area under an ROC curve.


Assuntos
Algoritmos , Sítios de Ligação , Biologia Computacional/métodos , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Modelos Genéticos , Nucleotídeos/metabolismo , Análise de Sequência de DNA
18.
G3 (Bethesda) ; 4(9): 1731-45, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053707

RESUMO

The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Neurospora crassa/efeitos da radiação , DNA Complementar/genética , DNA Fúngico/genética , Genes Fúngicos , Genoma Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neurospora crassa/genética , Fenótipo , RNA Fúngico/genética , RNA Mensageiro/genética
19.
Microbiol Spectr ; 2(2)2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26105820

RESUMO

Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.


Assuntos
Imunoprecipitação da Cromatina/métodos , DNA/metabolismo , Biologia Molecular/métodos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Genética Microbiana/métodos , Ligação Proteica
20.
Nature ; 499(7457): 178-83, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23823726

RESUMO

We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.


Assuntos
Redes Reguladoras de Genes , Hipóxia/genética , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Genômica , Hipóxia/metabolismo , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Oxigênio/farmacologia , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA