Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(5): 109655, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706864

RESUMO

For centuries, artisans have harnessed gold nanoparticles to imbue their creations with the vibrant hues that captivate the eye through interactions with visible light. In modern times, these distinct optoelectronic characteristics have pivoted toward the forefront of innovative technologies, finding their niche in advanced applications from solar energy to medicine, overshadowing their artistic heritage. This investigation reimagines the utilitarian scope of gold by innovating the optical characteristics of gold-titania nanostructures. This allows for an expanded palette of colors that retain the value of the precious metal. We employ nanostructured TiO2 in a high-pressure-high-temperature sintering technique that stabilizes Au nanoparticles, thwarting coalescence, and Oswald ripening. Further refinement is possible by engineering TiO2 color centers through the introduction of oxygen vacancies and Ti3+ ions, which aid in creating an opulent high-karat black-gold, but preserve the mechanical attributes essential to the integrity and function of the final product.

2.
Sci Adv ; 10(22): eadn0616, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809991

RESUMO

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy centers in a diamond single crystal. Population inversion is achieved through the Zeeman splitting of the S = 1 state in 15 tesla, resulting in a splitting of 0.42 terahertz, where the middle Sz = 0 sublevel is selectively pumped by visible light. To detect the terahertz radiation, we use a phase-sensitive terahertz setup, optimized for electron spin resonance (ESR) measurements. We determine the spin-lattice relaxation time up to 15 tesla using the light-induced ESR measurement, which shows the dominance of phonon-mediated relaxation and the high efficacy of the population inversion. The terahertz radiation is tunable by the magnetic field, thus these findings may lead to the next generation of tunable coherent terahertz sources.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564185

RESUMO

When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.

4.
J Phys Chem Lett ; 11(5): 1675-1681, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32040330

RESUMO

There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000-1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA