Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAMA Oncol ; 9(3): 344-353, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520426

RESUMO

Importance: Antiangiogenic drug combinations with anti-programmed cell death 1 protein and anti-programmed cell death 1 ligand 1 (PD-L1) agents are a novel treatment option for lung cancer. However, survival remains limited, and the activity of these combinations for tumors with high tumor mutation burden (TMB) is unknown. Objective: To assess the clinical benefits and safety of atezolizumab plus bevacizumab for patients with high-TMB advanced nonsquamous non-small cell lung cancer (NSCLC). Design, Setting, and Participants: This multicenter, single-arm, open-label, phase 2 nonrandomized controlled trial (Atezolizumab Plus Bevacizumab in First-Line NSCLC Patients [TELMA]) included treatment-naive patients aged 18 years or older with confirmed stage IIIB-IV nonsquamous NSCLC with TMB of 10 or more mutations/megabase and no EGFR, ALK, STK11, MDM2, or ROS1 alterations. From May 2019 through January 2021, patients were assessed at 13 sites in Spain, with follow-up until February 28, 2022. Interventions: Participants were given atezolizumab, 1200 mg, plus bevacizumab, 15 mg/kg, on day 1 of each 21-day cycle. Treatment was continued until documented disease progression, unacceptable toxic effects, patient withdrawal, investigator decision, or death. Main Outcomes and Measures: The primary end point was 12-month progression-free survival (PFS) rate (according to Response Evaluation Criteria in Solid Tumours, version 1.1 criteria); PFS was defined as the time from enrollment to disease progression or death. Adverse events were monitored according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. Results: A total of 307 patients were assessed for trial eligibility, of whom 266 were ineligible for enrollment. Of the 41 patients enrolled, 3 did not fulfill all inclusion criteria and were excluded. The remaining 38 patients (28 [73.7%] male; mean [SD] age, 63.7 [8.3] years) constituted the per-protocol population. The 12-month PFS rate was 51.3% (95% CI, 34.2%-66.0%), which met the primary end point. The 12-month overall survival (OS) rate was 72.0% (95% CI, 54.1%-83.9%). The median PFS was 13.0 months (95% CI, 7.9-18.0 months), and the median OS was not reached. Of the 38 patients, 16 (42.1%) achieved an objective response and 30 (78.9%) achieved disease control. The median time to response was 2.8 months (IQR, 2.8-3.58 months), with a median duration of response of 11.7 months (range, 3.57-22.4 months; the response was ongoing at cutoff). Of 16 responses, 8 (50.0%) were ongoing. Most adverse events were grade 1 or 2. For atezolizumab, the most common adverse events were fatigue (6 [15.8%]) and pruritus (6 [15.8%]). For bevacizumab, they were hypertension (10 [26.3%]) and proteinuria (4 [10.5%]). Drug discontinuation occurred in 2 patients receiving atezolizumab (5.3%) and 3 patients receiving bevacizumab (7.9%). PD-L1 levels were not associated with response, PFS, or OS. Conclusions and Relevance: These findings suggest that atezolizumab with bevacizumab is a potential treatment for high-TMB nonsquamous NSCLC. Trial Registration: ClinicalTrials.gov Identifier: NCT03836066.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Bevacizumab/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores , Progressão da Doença , Mutação
2.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171009

RESUMO

BACKGROUND: Neoadjuvant chemoimmunotherapy for non-small cell lung cancer (NSCLC) has improved pathological responses and survival rates compared with chemotherapy alone, leading to Food and Drug Administration (FDA) approval of nivolumab plus chemotherapy for resectable stage IB-IIIA NSCLC (AJCC 7th edition) without ALK or EGFR alterations. Unfortunately, a considerable percentage of tumors do not completely respond to therapy, which has been associated with early disease progression. So far, it is impossible to predict these events due to lack of knowledge. In this study, we characterized the gene expression profile of tumor samples to identify new biomarkers and mechanisms behind tumor responses to neoadjuvant chemoimmunotherapy and disease recurrence after surgery. METHODS: Tumor bulk RNA sequencing was performed in 16 pretreatment and 36 post-treatment tissue samples from 41 patients with resectable stage IIIA NSCLC treated with neoadjuvant chemoimmunotherapy from NADIM trial. A panel targeting 395 genes related to immunological processes was used. Tumors were classified as complete pathological response (CPR) and non-CPR, based on the total absence of viable tumor cells in tumor bed and lymph nodes tested at surgery. Differential-expressed genes between groups and pathway enrichment analysis were assessed using DESeq2 and gene set enrichment analysis. CIBERSORTx was used to estimate the proportions of immune cell subtypes. RESULTS: CPR tumors had a stronger pre-established immune infiltrate at baseline than non-CPR, characterized by higher levels of IFNG, GZMB, NKG7, and M1 macrophages, all with a significant area under the receiver operating characteristic curve (ROC) >0.9 for CPR prediction. A greater effect of neoadjuvant therapy was also seen in CPR tumors with a reduction of tumor markers and IFNγ signaling after treatment. Additionally, the higher expression of several genes, including AKT1, BST2, OAS3, or CD8B; or higher dendritic cells and neutrophils proportions in post-treatment non-CPR samples, were associated with relapse after surgery. Also, high pretreatment PD-L1 and tumor mutational burden levels influenced the post-treatment immune landscape with the downregulation of proliferation markers and type I interferon signaling molecules in surgery samples. CONCLUSIONS: Our results reinforce the differences between CPR and non-CPR responses, describing possible response and relapse immune mechanisms, opening the possibility of therapy personalization of immunotherapy-based regimens in the neoadjuvant setting of NSCLC.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Progressão da Doença , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia Neoadjuvante , Recidiva Local de Neoplasia/tratamento farmacológico , Nivolumabe/uso terapêutico , Receptores Proteína Tirosina Quinases , Transcriptoma , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA