Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Immunol ; 15: 1391954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765008

RESUMO

Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.


Assuntos
Anticorpos Biespecíficos , Antígenos B7 , Sarcoma , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Sarcoma/imunologia , Sarcoma/tratamento farmacológico , Antígenos B7/imunologia , Antígenos B7/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Feminino , Masculino , Animais , Ativação Linfocitária/imunologia , Pessoa de Meia-Idade , Complexo CD3/imunologia , Idoso , Proliferação de Células , Adulto
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612935

RESUMO

Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Pesquisadores , Ensaio de Imunoadsorção Enzimática , Nível de Saúde
3.
Blood Cancer J ; 14(1): 67, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637557

RESUMO

Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos B7/metabolismo , Antígenos B7/farmacologia
4.
Cancers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610966

RESUMO

B cell acute lymphoblastic leukemia (B-ALL) is characterized by an accumulation of malignant precursor cells. Treatment consists of multiagent chemotherapy followed by allogeneic stem cell transplantation in high-risk patients. In addition, patients bearing the BCR-ABL1 fusion gene receive concomitant tyrosine kinase inhibitor (TKI) therapy. On the other hand, monoclonal antibody therapy is increasingly used in both clinical trials and real-world settings. The introduction of rituximab has improved the outcomes in CD20 positive cases. Other monoclonal antibodies, such as tafasitamab (anti-CD19), obinutuzumab (anti-CD20) and epratuzumab (anti-CD22) have been tested in trials (NCT05366218, NCT04920968, NCT00098839). The efficacy of monoclonal antibodies is based, at least in part, on their ability to induce antibody-dependent cellular cytotoxicity (ADCC). Combination treatments, e.g., chemotherapy and TKI, should therefore be screened for potential interference with ADCC. Here, we report on in vitro data using BCR-ABL1 positive and negative B-ALL cell lines treated with rituximab and TKI. NK cell activation, proliferation, degranulation, cytokine release and tumor cell lysis were analyzed. In contrast to ATP site inhibitors such as dasatinib and ponatinib, the novel first-in-class selective allosteric ABL myristoyl pocket (STAMP) inhibitor asciminib did not significantly impact ADCC in our settings. Our results suggest that asciminib should be considered in clinical trials.

5.
Sci Transl Med ; 16(737): eadh1988, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446900

RESUMO

Despite the advances in cancer treatment achieved, for example, by the CD20 antibody rituximab, an urgent medical need remains to optimize the capacity of such antibodies to induce antibody-dependent cellular cytotoxicity (ADCC) that determines therapeutic efficacy. The cytokine IL-15 stimulates proliferation, activation, and cytolytic capacity of NK cells, but broad clinical use is prevented by short half-life, poor accumulation at the tumor site, and severe toxicity due to unspecific immune activation. We here report modified immunocytokines consisting of Fc-optimized CD19 and CD20 antibodies fused to an IL-15 moiety comprising an L45E-E46K double mutation (MIC+ format). The E46K mutation abrogated binding to IL-15Rα, thereby enabling substitution of physiological trans-presentation by target binding and thus conditional IL-15Rßγ stimulation, whereas the L45E mutation optimized IL-15Rßγ agonism and producibility. In vitro analysis of NK activation, anti-leukemia reactivity, and toxicity using autologous and allogeneic B cells confirmed target-dependent function of MIC+ constructs. Compared with Fc-optimized CD19 and CD20 antibodies, MIC+ constructs mediated superior target cell killing and NK cell proliferation. Mouse models using luciferase-expressing human NALM-6 lymphoma cells, patient acute lymphoblastic leukemia (ALL) cells, and murine EL-4 lymphoma cells transduced with human CD19/CD20 as targets and human and murine NK cells as effectors, respectively, confirmed superior and target-dependent anti-leukemic activity. In summary, MIC+ constructs combine the benefits of Fc-optimized antibodies and IL-15 cytokine activity and mediate superior NK cell immunity with potentially reduced side effects. They thus constitute a promising new immunotherapeutic approach shown here for B cell malignancies.


Assuntos
Interleucina-15 , Linfoma , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Anticorpos , Antígenos CD19 , Citocinas , Fragmentos Fc das Imunoglobulinas
6.
J Immunother Cancer ; 12(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296597

RESUMO

BACKGROUND: Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. METHODS: iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. RESULTS: In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. CONCLUSION: In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT.


Assuntos
Doença Enxerto-Hospedeiro , Células T Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Antígenos CD19 , Doença Enxerto-Hospedeiro/etiologia , Recidiva
7.
Blood Cancer Discov ; 4(6): 468-489, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847741

RESUMO

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE: The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.


Assuntos
Antígenos HLA , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Peptídeos , Células-Tronco
8.
Nat Commun ; 14(1): 6731, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872136

RESUMO

Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.


Assuntos
Retrovirus Endógenos , Neoplasias , Humanos , Retrovirus Endógenos/genética , Inibidores de Histona Desacetilases/farmacologia , Linfócitos T , Antígenos de Histocompatibilidade Classe I
9.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685962

RESUMO

Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically absent from healthy tissues; thus, they are promising tumor antigens for novel immunotherapeutic approaches. We developed bispecific fusion proteins (BFPs) consisting of the NKG2D receptor domain targeting multiple NKG2DLs, fused to either anti-CD3 (NKG2D-CD3) or anti-CD16 (NKG2D-CD16) Fab fragments. First, we characterized the expression of the NKG2DLs (MICA, MICB, ULBP1-4) on TNBC cell lines and observed the highest surface expression for MICA and ULBP2. Targeting TNBC cells with NKG2D-CD3/CD16 efficiently activated both NK and T cells, leading to their degranulation and cytokine release and lysis of TNBC cells. Furthermore, PBMCs from TNBC patients currently undergoing chemotherapy showed significantly higher NK and T cell activation and tumor cell lysis when stimulated with NKG2D-CD3/CD16. In conclusions, BFPs activate and direct the NK and T cells of healthy and TNBC patients against TNBC cells, leading to efficient eradication of tumor cells. Therefore, NKG2D-based NK and T cell engagers could be a valuable addition to the treatment options for TNBC patients.


Assuntos
Proteínas Recombinantes de Fusão , Neoplasias de Mama Triplo Negativas , Humanos , Administração Cutânea , Agressão , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Receptores de IgG , Complexo CD3
10.
J Hematol Oncol ; 16(1): 96, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587502

RESUMO

BACKGROUND: About half of AML patients achieving complete remission (CR) display measurable residual disease (MRD) and eventually relapse. FLYSYN is an Fc-optimized antibody for eradication of MRD directed to FLT3/CD135, which is abundantly expressed on AML cells. METHODS: This first-in-human, open-label, single-arm, multicenter trial included AML patients in CR with persisting or increasing MRD and evaluated safety/tolerability, pharmacokinetics and preliminary efficacy of FLYSYN at different dose levels administered intravenously (cohort 1-5: single dose of 0.5 mg/m2, 1.5 mg/m2, 5 mg/m2, 15 mg/m2, 45 mg/m2; cohort 6: 15 mg/m2 on day 1, 15 and 29). Three patients were treated per cohort except for cohorts 4 and 6, which were expanded to nine and ten patients, respectively. Primary objective was safety, and secondary efficacy objective was ≥ 1 log MRD reduction or negativity in bone marrow. RESULTS: Overall, 31 patients were treated, of whom seven patients (22.6%) experienced a transient decrease in neutrophil count (two grade 3, others ≤ grade 2). No infusion-related reaction or dose-limiting toxicity was observed. Adverse events (AEs) were mostly mild to moderate, with the most frequent AEs being hematologic events and laboratory abnormalities. Response per predefined criteria was documented in 35% of patients, and two patients maintained MRD negativity until end of study. Application of 45 mg/m2 FLYSYN as single or cumulative dose achieved objective responses in 46% of patients, whereas 28% responded at lower doses. CONCLUSIONS: FLYSYN monotherapy is safe and well-tolerated in AML patients with MRD. Early efficacy data are promising and warrant further evaluation in an up-coming phase II trial. Trial registration This clinical is registered on clinicaltrials.gov (NCT02789254).


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Leucemia Mieloide Aguda , Humanos , Anticorpos Monoclonais , Fragmentos Fc das Imunoglobulinas , Neoplasia Residual , Leucemia Mieloide Aguda/tratamento farmacológico , Tirosina Quinase 3 Semelhante a fms
11.
Nat Commun ; 14(1): 5032, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596280

RESUMO

T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.


Assuntos
Agamaglobulinemia , COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T , Peptídeos/uso terapêutico
12.
Front Immunol ; 13: 1002898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275693

RESUMO

Natural killer (NK) cells largely contribute to antibody-dependent cellular cytotoxicity (ADCC), a central factor for success of monoclonal antibodies (mAbs) treatment of cancer. The B7 family member B7-H3 (CD276) recently receives intense interest as a novel promising target antigen for immunotherapy. B7-H3 is highly expressed in many tumor entities, whereas expression on healthy tissues is rather limited. We here studied expression of B7-H3 in sarcoma, and found substantial levels to be expressed in various bone and soft-tissue sarcoma subtypes. To date, only few immunotherapeutic options for treatment of sarcomas that are limited to a minority of patients are available. We here used a B7-H3 mAb to generate chimeric mAbs containing either a wildtype Fc-part (8H8_WT) or a variant Fc part with amino-acid substitutions (S239D/I332E) to increase affinity for CD16 expressing NK cells (8H8_SDIE). In comparative studies we found that 8H8_SDIE triggers profound NK cell functions such as activation, degranulation, secretion of IFNγ and release of NK effector molecules, resulting in potent lysis of different sarcoma cells and primary sarcoma cells derived from patients. Our findings emphasize the potential of 8H8_SDIE as novel compound for treatment of sarcomas, particularly since B7-H3 is expressed in bone and soft-tissue sarcoma independent of their subtype.


Assuntos
Células Matadoras Naturais , Sarcoma , Humanos , Fragmentos Fc das Imunoglobulinas , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Monoclonais , Sarcoma/terapia , Sarcoma/tratamento farmacológico , Antígenos B7/genética
13.
Sci Rep ; 12(1): 15856, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151238

RESUMO

Despite therapeutic advances, mortality of Acute Myeloid Leukemia (AML) is still high. Currently, the determination of prognosis which guides treatment decisions mainly relies on genetic markers. Besides molecular mechanisms, the ability of malignant cells to evade immune surveillance influences the disease outcome and, among others, the expression of checkpoints modulators contributes to this. In AML, functional expression of the checkpoint molecule OX40 was reported, but the prognostic relevance of OX40 and its ligand OX40L axis has so far not been investigated. Here we described expression and prognostic relevance of the checkpoint modulators OX40 and OX40L, analyzed on primary AML cells obtained from 92 therapy naïve patients. Substantial expression of OX40 and OX40L on AML blasts was detected in 29% and 32% of the investigated subjects, respectively, without correlation between the expression of the receptor and its ligand. Whereas OX40L expression was not associated with different survival, patients with high expression levels of the receptor (OX40high) on AML blasts survived significantly shorter than OX40low patients (p = 0.009, HR 0.46, 95% CI 0.24-0.86), which identifies OX40 as novel prognostic marker and a potential therapeutic target in AML patients.


Assuntos
Leucemia Mieloide Aguda , Receptores OX40 , Marcadores Genéticos , Humanos , Fatores Imunológicos , Vigilância Imunológica , Leucemia Mieloide Aguda/genética , Ligantes , Ligante OX40/metabolismo , Receptores OX40/metabolismo , Taxa de Sobrevida
14.
Blood ; 140(10): 1167-1181, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853161

RESUMO

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/genética , Complexo Principal de Histocompatibilidade , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transplante Homólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
15.
J Cancer Res Clin Oncol ; 148(10): 2759-2771, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35551463

RESUMO

PURPOSE: Acute B-lymphoblastic leukemia (B-ALL) is a malignant disease characterized by accumulation of clonal immature lymphocytes in the bone marrow and peripheral blood. The approval of BCR::ABL1 tyrosine kinase inhibitors (TKI) such as imatinib, dasatinib, nilotinib and ponatinib marked a milestone in targeted therapy only for a subset of patients carrying the translocation t(9;22)(q34;q11). Immunotherapy with the bispecific antibody (bsAb) blinatumomab targeting CD19xCD3 revolutionized treatment of all B-ALL cases. The combination of both TKI and bsAb, so-called "dual targeting", is currently under clinical investigation, although TKI might influence T cell effects. METHODS: We here investigated the combination of different TKI and blinatumomab in BCR::ABL1+ and BCR::ABL1- B-ALL cell lines and primary samples regarding T cell proliferation, differentiation, cytokine release and killing of tumor cells. RESULTS: In vitro analysis revealed profound reduction of T cell proliferation, differentiation, cytokine release and killing of tumor cells upon application of BCR::ABL1 TKI with blinatumomab. Inhibition was more pronounced with dasatinib and ponatinib compared to nilotinib and imatinib. T cell signalling after CD3 stimulation was impaired by TKI mirrored by inhibition of LCK phosphorylation. This known off-target effect might influence the efficacy of bsAb therapy when combined with BCR::ABL1 TKI. CONCLUSION: In conclusion, we propose that nilotinib and imatinib might also be suitable substances for combination with blinatumomab and suggest evaluation in clinical trials.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Biespecíficos , Citocinas , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico
16.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288466

RESUMO

BACKGROUND: In lymphoid malignancies, the introduction of chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) has achieved remarkable clinical success. However, such immunotherapeutic strategies are not yet established for acute myeloid leukemia (AML), the most common form of acute leukemia in adults. Common targets in AML such as CD33, CD123, and CLEC12A are highly expressed on both AML blasts and on normal myeloid cells and hematopoietic stem cells (HSCs), thereby raising toxicity concerns. In B-cell acute lymphoblastic leukemia (B-ALL), bsAbs and CAR-T therapy targeting CD19 and CD22 have demonstrated clinical success, but resistance via antigen loss is common, motivating the development of agents focused on alternative targets. An attractive emerging target is FLT3, a proto-oncogene expressed in both AML and B-ALL, with low and limited expression on myeloid dendritic cells and HSCs. METHODS: We developed and characterized CLN-049, a T cell-activating bsAb targeting CD3 and FLT3, constructed as an IgG heavy chain/scFv fusion. CLN-049 binds the membrane proximal extracellular domain of the FLT3 protein tyrosine kinase, which facilitates the targeting of leukemic blasts regardless of FLT3 mutational status. CLN-049 was evaluated for preclinical safety and efficacy in vitro and in vivo. RESULTS: CLN-049 induced target-restricted activation of CD4+ and CD8+ T cells. AML cell lines expressing a broad range of surface levels of FLT3 were efficiently lysed on treatment with subnanomolar concentrations of CLN-049, whereas FLT3-expressing hematopoietic progenitor cells and dendritic cells were not sensitive to CLN-049 killing. Treatment with CLN-049 also induced lysis of AML and B-ALL patient blasts by autologous T cells at the low effector-to-target ratios typically observed in patients with overt disease. Lysis of leukemic cells was not affected by supraphysiological levels of soluble FLT3 or FLT3 ligand. In mouse xenograft models, CLN-049 was highly active against human leukemic cell lines and patient-derived AML and B-ALL blasts. CONCLUSIONS: CLN-049 has a favorable efficacy and safety profile in preclinical models, warranting evaluation of its antileukemic activity in the clinic.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Imunoglobulina G/uso terapêutico , Imunoterapia Adotiva , Subunidade alfa de Receptor de Interleucina-3 , Lectinas Tipo C , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Receptores Mitogênicos
17.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110356

RESUMO

T cell-based immunotherapy, for example, with T cell-recruiting bispecific antibody (bsAb), has revolutionized oncological treatment. However, many patients do not respond to treatment, and long-term remissions are still rare. Several tumor immune evasion mechanisms have been reported to counteract efficiency of T cell-engaging therapeutics. Platelets largely affect cancer pathophysiology by mediating tumor invasion, metastasis, and immune evasion. On treatment of patients in a clinical trial with a PSMA×CD3 bsAb (NCT04104607), we observed profound treatment-associated platelet activation, mirrored by a decrease of total platelet count. On modeling the treatment setting, we found that platelet activation significantly reduced bsAb-mediated CD4+ and CD8+ T-cell reactivity as revealed by impaired T-cell degranulation, secretion of perforin, and ultimately, inhibition of target cell lysis. This effect occurred in a transforming growth factor beta (TGF-ß)-dependent manner and was not restricted to PSMA×CD3 bsAb, but rather observed with various CD3-directed bispecific constructs, including the approved CD19×CD3 bsAb blinatumomab. BsAb-mediated T-cell reactivity could be restored by platelet inhibition and specifically by blocking the TGF-ß axis. Together, our findings demonstrate that platelets undermine the efficacy of T cell-recruiting bsAb and identify modulation of platelet function as a means to reinforce the effectiveness of bsAb treatment.


Assuntos
Anticorpos Biespecíficos/metabolismo , Plaquetas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T/metabolismo , Idoso , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino
18.
Ann Hematol ; 101(4): 773-780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044512

RESUMO

Several genetic and clinical markers are established as prognostic factors in chronic lymphocytic leukemia (CLL). However, additional markers are needed for risk stratification. Flow cytometric analysis is a mainstay of CLL diagnostics, thus identification of novel prognostic surface markers can improve risk assessment without increasing burden for patients and physicians. Furthermore, surface molecules preferentially expressed in high-risk cases could serve as therapeutic targets for immunotherapy. CD105 (endoglin) is a TGF-beta coreceptor and activates endothelial cells in healthy tissues and cancer. In addition, it is expressed on healthy hematopoietic precursors as well as lymphoid and myeloid leukemias. In acute myeloid leukemia (AML), a CD105 antibody is successfully applied in clinical studies. In CLL, mRNA expression of the CD105 gene ENG reportedly correlates with other risk factors but failed to show significant correlation with overall survival. However, CD105 protein expression in CLL has never been studied. We here analyzed CD105 surface expression on CLL cells from 71 patients by flow cytometry and report for the first time that substantial levels of CD105 are detectable on CLL cells in 70.4% of patients. Using receiver operating characteristics, we established a cutoff of 5.99% positive cells to distinguish between low and high CD105 levels, the latter correlating with decreased time to first treatment and overall survival. High CD105 expression further correlates with CD38 expression. Our study identified membrane expression of CD105 as a potential risk marker and therapeutic target in high-risk CLL. However, multivariant analyses of large cohorts should be performed in confirmatory studies.


Assuntos
Endoglina/análise , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Endoglina/genética , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mieloide Aguda/genética , Prognóstico
19.
Diagnostics (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34829391

RESUMO

Recent success of novel therapies has improved treatment of chronic lymphocytic leukemia (CLL) patients, but most of them still require several treatment regimes. To improve treatment choice, prognostic markers suitable for prediction of disease outcome are required. Several molecular/genetic markers have been established, but accessibility for the entirety of all patients is limited. We here evaluated the relevance of GITR/4-1BB as well as their ligands for the prognosis of CLL patients. Surface expression of GITR/GITRL and 4-1BB/4-1BBL was correlated with established prognostic markers. Next, we separated our patient population according to GITR/GITRL and 4-1BB/4-1BBL expression in groups with high/low expression levels and performed Kaplan-Meier analyses. Interestingly, no correlation was observed with the defined prognostic markers. Whereas no significant difference between high and low expression of GITR, GITRL and 4-1BBL was observed, high 4-1BB levels on leukemic cells were associated with significantly shorter survival. Thereby we identify 4-1BB as prognostic marker for CLL.

20.
Sci Rep ; 11(1): 18012, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504191

RESUMO

DNAM-1 is reportedly expressed on cytotoxic T and NK cells and, upon interaction with its ligands CD112 and CD155, plays an important role in tumor immunosurveillance. It has also been reported to be functionally expressed by myeloid cells, but expression and function on malignant cells of the myeloid lineage have not been studied so far. Here we analyzed expression of DNAM-1 in leukemic cells of acute myeloid leukemia (AML) patients. We found substantial levels of DNAM-1 to be expressed on leukemic blasts in 48 of 62 (> 75%) patients. Interaction of DNAM-1 with its ligands CD112 and CD155 induced release of the immunomodulatory cytokines IL-6, IL-8 IL-10 and TNF-α by AML cells and DNAM-1 expression correlated with a more differentiated phenotype. Multivariate analysis did not show any association of DNAM-1 positivity with established risk factors, but expression was significantly associated with clinical disease course: patients with high DNAM-1 surface levels had significantly longer progression-free and overall survival compared to DNAM-1low patients, independently whether patients had undergone allogenic stem cell transplantation or not. Together, our findings unravel a functional role of DNAM-1 in AML pathophysiology and identify DNAM-1 as a potential novel prognostic maker in AML.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismo , Receptores de Superfície Celular/genética , Receptores Virais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Células K562 , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/patologia , Cultura Primária de Células , Prognóstico , Receptores de Superfície Celular/imunologia , Receptores Virais/imunologia , Transdução de Sinais , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA