Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 7228, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775308

RESUMO

A strong coupling regime is demonstrated at near infrared between metallic nanoparticle chains (MNP), supporting localized surface plasmons (LSP), and dielectric waveguides (DWGs) having different core materials. MNP chains are deposited on the top of these waveguides in such a way that the two guiding structures are in direct contact with each other. The strong coupling regime implies (i) a strong interpenetration of the bare modes forming two distinct supermodes and (ii) a large power overlap up to the impossibility to distinguish the power quota inside each bare structure. Additionally, since the system involves LSPs, (i) such a strong coupling occurs on a broad band and (ii) the peculiar vortex-like propagation mechanism of the optical power, supported by the MNP chain, leads to a regime where the light is slowed down over a wide wavelength range. Finally, the strong coupling allows the formation of guided supermodes in regions where the bare modes cannot be both guided at the same time. In other words, very high k modes can then be propagated in a dielectric photonic circuit thanks to hybridisation, leading to extremely concentrated propagating wave. Experimental work gives indirect proof of strong coupling regime whatever the waveguide core indexes.

2.
Opt Lett ; 41(16): 3679-82, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519061

RESUMO

We numerically demonstrate that short gold nanoparticle chains coupled to traditional SOI waveguides allow conceiving surface plasmon-based nanotweezers. This configuration provides for jumpless control of the trapping position of a nano-object as a function of the excitation wavelength, allowing for linear repositioning. This novel feature can be captivating for the conception of compact integrated optomechanical nanoactuators.

3.
Opt Express ; 20(16): 17402-10, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23038293

RESUMO

We demonstrate the integration of short metal nanoparticle chains (L ≈700 nm) supporting localized surface plasmons in Silicon On Insulator (SOI) waveguides at telecom wavelengths. Nanoparticles are deposited on the waveguide top and excited through the evanescent field of the TE waveguide modes. Finite difference time domain calculations and waveguide transmission measurements reveal that almost all the TE mode energy can be transferred to nanoparticle chains at resonance. It is also shown that the transmission spectrum is very sensitive to the molecular environment of nanoparticles, thus opening the way towards ultra-compact sensors in guided plasmonics on SOI. An experimental demonstration is reported with octadecanthiol molecules for a detection volume as small as 0.26 attoliter.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Silício/química , Simulação por Computador , Nanopartículas Metálicas/ultraestrutura , Análise Numérica Assistida por Computador , Fatores de Tempo
4.
Nano Lett ; 12(2): 1032-7, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22251002

RESUMO

We demonstrate that the optical energy carried by a TE dielectric waveguide mode can be totally transferred into a transverse plasmon mode of a coupled metal nanoparticle chain. Experiments are performed at 1.5 µm. Mode coupling occurs through the evanescent field of the dielectric waveguide mode. Giant coupling effects are evidenced from record coupling lengths as short as ~560 nm. This result opens the way to nanometer scale devices based on localized plasmons in photonic integrated circuits.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dispositivos Ópticos , Silício/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA