Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
EMBO Mol Med ; 5(5): 751-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23505126

RESUMO

Here, we report the biochemical and genetic basis of the Vel blood group antigen, which has been a vexing mystery for decades, especially as anti-Vel regularly causes severe haemolytic transfusion reactions. The protein carrying the Vel blood group antigen was biochemically purified from red blood cell membranes. Mass spectrometry-based de novo peptide sequencing identified this protein to be small integral membrane protein 1 (SMIM1), a previously uncharacterized single-pass membrane protein. Expression of SMIM1 cDNA in Vel- cultured cells generated anti-Vel cell surface reactivity, confirming that SMIM1 encoded the Vel blood group antigen. A cohort of 70 Vel- individuals was found to be uniformly homozygous for a 17 nucleotide deletion in the coding sequence of SMIM1. The genetic homogeneity of the Vel- blood type, likely having a common origin, facilitated the development of two highly specific DNA-based tests for rapid Vel genotyping, which can be easily integrated into blood group genotyping platforms. These results answer a 60-year-old riddle and provide tools of immediate assistance to all clinicians involved in the care of Vel- patients.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Antígenos de Grupos Sanguíneos/genética , Eritrócitos/metabolismo , Deleção de Genes , Ligação Genética , Genótipo , Homozigoto , Humanos , Células K562 , Proteínas de Membrana/genética , Fenótipo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Transfecção
3.
Transfusion ; 53(2): 363-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22690701

RESUMO

BACKGROUND: Several studies showed in people of African descent the existence of a genetic linkage between RHD alleles encoding a variant D antigen and a given altered RHCE*ce allele. RHCE*ceBI is a rare allele encountered in people of African descent, that encodes a Hr- hr(S) - Rhce protein. Our study shows that RHCE*ceBI appears to be genetically linked to two very similar variant RHD alleles, RHD*DOL1 and RHD*DOL2, and demonstrates for the first time that DOL-2 is a partial D antigen. STUDY DESIGN AND METHODS: After finding out an individual with both RHCE*ceBI and RHD*DOL presumed to be in cis, we hypothesized a genetic linkage between those two genes. All individuals (n = 7) known to carry RHCE*ceBI in our laboratory, including the index case, were fully investigated at the serologic and molecular level. RESULTS: One individual with alloanti-D, being homozygous for RHCE*ceBI and RHD*DOL2, allowed us to confirm the genetic linkage between those two genes, as well as the partial D status of DOL-2. In the six RHCE*ceBI remaining individuals, three were found with RHD*DOL2 and 3 with RHD*DOL1, likely in cis. Three of them made an alloanti-D; one was DOL-1 and two were DOL-2. CONCLUSION: The rare RHCE*ceBI allele appears to be in cis either with RHD*DOL1 or with RHD*DOL2 in people of African descent. DOL-1 and DOL-2 must be considered as partial D antigens. We recommend a systematic search for RHD*DOL1 and RHD*DOL2 in people found to carry RHCE*ceBI and vice versa, especially in patients with sickle cell disease.


Assuntos
População Negra/genética , Epistasia Genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Alelos , Epistasia Genética/fisiologia , Feminino , Frequência do Gene , Variação Genética/genética , Variação Genética/fisiologia , Humanos , Recém-Nascido , Masculino , Gravidez , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Testes Sorológicos
4.
Transfusion ; 51(1): 36-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20707859

RESUMO

BACKGROUND: DNA analysis for the prediction of blood group antigen expression has broad implications in transfusion medicine. It may be of particular interest especially to detect variants, when antigen expression is weak or altered. The use of high-throughput DNA analysis has never been applied to donors whose red blood cells (RBCs) are selected for reagent RBCs. The aim of this study was to analyze the concordance between the serologic phenotype and that predicted from DNA analysis in panel donors, to determine the benefit of the use of DNA analysis in reagent RBC selection strategy. STUDY DESIGN AND METHODS: The "Panel National de Référence du Centre National de Référence sur les Groupes Sanguins" is a reference reagent mainly used for antibody identification. DNA genotyping of 356 panel donors was performed with BeadChips (human erythrocyte antigen v1.2 BeadChips, BioArray Solutions). The comparison between serologic phenotype and that predicted from DNA analysis held on 8876 paired results obtained from 10 blood group systems and 25 antigens. RESULTS: A 99.95% concordance was observed. Discrepancies in four cases (RH, KEL, LU, and DO systems) were analyzed. Genotyping precisions on the Duffy system were of particular interest. No new rare blood group was observed. CONCLUSION: Systematic DNA analysis of panel donors should unquestionably change the management of reagent RBC selection. The notion of "antigens in double dose" should evolve regarding data obtained from DNA analysis, allowing an improved quality of reagent RBCs for antibody screening and identification.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/imunologia , Eritrócitos/imunologia , Análise de Sequência de DNA/métodos , Genótipo , Humanos
5.
Transfusion ; 50(10): 2106-16, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20492605

RESUMO

BACKGROUND: The Colton blood group system currently comprises three antigens, Co(a) , Co(b) , and Co3. The latter is only absent in the extremely rare individuals of the Colton "null" phenotype, usually referred to as Co(a-b-), which lack the water channel AQP1 that carries the Colton antigens. The discovery of a Co(a-b-) individual with no AQP1 deficiency suggested another molecular basis for the Co(a-b-) phenotype. STUDY DESIGN AND METHODS: Red blood cells were analyzed by stopped-flow light scattering and Western blotting and typed by hemagglutination and flow cytometry. Genotyping by sequencing and polymerase chain reaction-restriction fragment length polymorphism was applied. An expression system for Colton antigens was developed in mammalian cells. RESULTS: Although Co(a-b-), the proband expressed fully functional AQP1 and had developed a novel Colton alloantibody. Sequencing of AQP1 revealed a homozygous nucleotide change (140A>G) encoding the single-amino-acid substitution Q47R. A second case was identified due to the presence of this novel Colton alloantibody. By generating an expression system for Colton antigens in K-562 cells, the Q47R substitution was shown to inhibit the expression of both Co(a) and Co(b) antigens. Other naturally occurring single-amino-acid substitutions, that is, A45T, P38L, and N192K, were also studied in this Colton antigen expression system. CONCLUSIONS: The Co(a-b-) phenotype can be generated by a functional AQP1 allele, that is, AQP1 140G encoding AQP1 (Q47R) and allowing the development of a novel Colton alloantibody. This study also shows that the Co(b) antigen can be produced by at least two different substitutions at Amino Acid Position 45, that is, A45V and A45T.


Assuntos
Aquaporina 1/genética , Aquaporina 1/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Alelos , Antígenos de Grupos Sanguíneos/genética , Linhagem Celular , Eritrócitos/imunologia , Feminino , Citometria de Fluxo , Genótipo , Humanos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fenótipo , Reação em Cadeia da Polimerase
6.
Blood ; 100(12): 4223-31, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12393640

RESUMO

The molecular backgrounds of variants encountered in Afro-Caribbean black individuals and associated with the production of clinically significant antibodies against high-incidence antigens (anti-RH18, anti-RH34) and against Rhe epitopes were determined. We showed that RH:-18 phenotypes are produced by 3 distinct RHCE alleles: ceEK carrying 48G>C (exon 1), 712A>G, 787A>G, 800T>A (exon 5); ceBI carrying 48G>C (exon 1), 712A>G (exon 5), 818C>T (exon 6), 1132C>G (exon 8); and the already known ceAR allele carrying 48G>C (exon 1), 712A>G, 733C>G, 787A>G, 800T>A (exon 5), and 916A>G (exon 6). The RH:-34 phenotype is produced by the (C)ce(s) haplotype described previously and composed of a hybrid D-CE(3-8)-D gene with 4 extra mutations next to a ce(s) allele (733C>G; exon 5) with an extra mutation in exon 7 (1006G>T). Partial Rhe with risk of immunization against lacking epitopes can be produced by the new ce(s) allele carrying an extra mutation in exon 3 (340C>T) and by the ceMO allele described previously. A population of sickle cell disease patients was screened to estimate the incidence of these rare alleles, with the conclusion that a procedure is required to detect the associated phenotypes in black donors to ensure transfusion safety for patients. We also described a new variant [ce(s)(748)] and variants carrying different altered alleles in nonimmunized patients and for whom the risk of immunization is discussed.


Assuntos
População Negra/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Alelos , Anemia Falciforme/sangue , Anemia Falciforme/genética , Tipagem e Reações Cruzadas Sanguíneas/métodos , Transfusão de Sangue , Região do Caribe/etnologia , Eritrócitos/imunologia , Feminino , Variação Genética , Humanos , Isoanticorpos/sangue , Isoantígenos/sangue , Isoantígenos/genética , Masculino , Linhagem , Gravidez , Isoimunização Rh , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Análise de Sequência de DNA , Testes Sorológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA