Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005907

RESUMO

Pepino mosaic virus (PepMV) causes significant economic losses in tomato crops worldwide. Since its first detection infecting tomato in 1999, aggressive PepMV variants have emerged. This study aimed to characterize two aggressive PepMV isolates, PepMV-H30 and PepMV-KLP2. Both isolates were identified in South-Eastern Spain infecting tomato plants, which showed severe symptoms, including bright yellow mosaics. Full-length infectious clones were generated, and phylogenetic relationships were inferred using their nucleotide sequences and another 35 full-length sequences from isolates representing the five known PepMV strains. Our analysis revealed that PepMV-H30 and PepMV-KLP2 belong to the EU and CH2 strains, respectively. Amino acid sequence comparisons between these and mild isolates identified 8 and 15 amino acid substitutions for PepMV-H30 and PepMV-KLP2, respectively, potentially involved in severe symptom induction. None of the substitutions identified in PepMV-H30 have previously been described as symptom determinants. The E236K substitution, originally present in the PepMV-H30 CP, was introduced into a mild PepMV-EU isolate, resulting in a virus that causes symptoms similar to those induced by the parental PepMV-H30 in Nicotiana benthamiana plants. In silico analyses revealed that this residue is located at the C-terminus of the CP and is solvent-accessible, suggesting its potential involvement in CP-host protein interactions. We also examined the subcellular localization of PepGFPm2E236K in comparison to that of PepGFPm2, focusing on chloroplast affection, but no differences were observed in the GFP subcellular distribution between the two viruses in epidermal cells of N. benthamiana plants. Due to the easily visible symptoms that PepMV-H30 and PepMV-KLP2 induce, these isolates represent valuable tools in programs designed to breed resistance to PepMV in tomato.


Assuntos
Potexvirus , Solanum lycopersicum , Filogenia , Melhoramento Vegetal , Sequência de Aminoácidos , Doenças das Plantas
2.
PLoS Pathog ; 19(10): e1011732, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37851701

RESUMO

Cysteine oxidations play important regulatory roles during animal virus infections. Despite the importance of redox modifications during plant infections, no plant virus protein has yet been shown to be regulated by cysteine oxidation. The potexvirus pepino mosaic virus (PepMV) is pandemic in tomato crops. Previously we modeled the structure of the PepMV particle and coat protein (CP) by cryo-electron microscopy and identified critical residues of the CP RNA-binding pocket that interact with the viral RNA during particle formation and viral cell-to-cell movement. The PepMV CP has a single cysteine residue (Cys127) central to its RNA binding pocket, which is highly conserved. Here we show that the Cys127Ser replacement diminishes PepMV fitness, and that PepMV CPWT is oxidized in vivo while CPC127S is not. We also show that Cys127 gets spontaneously glutathionylated in vitro, and that S-glutathionylation blocks in vitro the formation of virion-like particles (VLPs). VLPs longer than 200 nm could be formed after in planta CPC127S overexpression, while very short and dispersed VLPs were observed after CPWT overexpression. Our results strongly suggest that the CP redox status regulates CP functions via cysteine oxidation.


Assuntos
Potexvirus , Microscopia Crioeletrônica , Cisteína/metabolismo , Proteínas de Plantas/metabolismo , Oxirredução , RNA/metabolismo , Doenças das Plantas
3.
New Phytol ; 238(1): 332-348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631978

RESUMO

Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.


Assuntos
Potexvirus , Solanum lycopersicum , Viroses , Sequência de Bases , Viroses/genética , Doenças das Plantas
4.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578261

RESUMO

Plant viruses can evolve towards new pathogenic entities that may eventually cause outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing significant losses in tomato crops. While new resistances are deployed, the only means of control is the implementation of effective prevention and eradication strategies. For this purpose, in this work, we have designed, assessed, and compared an array of tests for the specific and sensitive detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR (RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed, and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV, and one set that works as an internal control. Finally, we compared all of these methods by employing a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.


Assuntos
Frutas/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/normas , Vírus de Plantas/genética , Solanum lycopersicum/virologia , Tobamovirus/genética , Primers do DNA , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Tobamovirus/classificação , Tobamovirus/isolamento & purificação
5.
Viruses ; 13(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668729

RESUMO

Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/genética , Plantas/virologia , Replicação Viral/genética , Animais , Interações entre Hospedeiro e Microrganismos/genética , Transmissão Vertical de Doenças Infecciosas , Microscopia Confocal/métodos
6.
Plant Methods ; 15: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149024

RESUMO

BACKGROUND: Vectors based on plant viruses are important tools for functional genomics, cellular biology, plant genome engineering and molecular farming. We previously reported on the construction of PepGFP2a, a viral vector based on pepino mosaic virus (PepMV) which expressed GFP efficiently and stably in plants of its experimental host Nicotiana benthamiana, but not in its natural host tomato. We have prepared a new set of PepMV-based vectors with improved stability that are able to express a wide range of reporter genes, useful for both N. benthamiana and tomato. RESULTS: We first tested PepGFPm1 and PepGFPm2, two variants of PepGFP2a in which we progressively reduced a duplication of nucleotides encoding the N-terminal region of the coat protein. The new vectors had improved GFP expression levels and stability in N. benthamiana but not in tomato plants. Next, we replaced GFP by DsRed or mCherry in the new vectors PepDsRed and PepmCherry, respectively; while PepmCherry behaved similarly to PepGFPm2, PepDsRed expressed the reporter gene efficiently also in tomato plants. We then used PepGFPm2 and PepDsRed to study the PepMV localization in both N. benthamiana and tomato cells. Using confocal laser scanning microscopy (CLSM), we observed characteristic fluorescent bodies in PepMV-infected cells; these bodies had a cytoplasmic localization and appeared in close proximity to the cell nucleus. Already at 3 days post-agroinoculation there were fluorescent bodies in almost every cell of agroinoculated tissues of both hosts, and always one body per cell. When markers for the endoplasmic reticulum or the Golgi apparatus were co-expressed with PepGFPm2 or PepDsRed, a reorganisation of these organelles was observed, with images suggesting that both are intimately related but not the main constituents of the PepMV bodies. Altogether, this set of data suggested that the PepMV bodies are similar to the potato virus X (PVX) "X-bodies", which have been described as the PVX viral replication complexes (VRCs). To complete the set of PepMV-based vectors, we constructed a vector expressing the BAR herbicide resistance gene, useful for massive susceptibility screenings. CONCLUSIONS: We have significantly expanded the PepMV tool box by producing a set of new vectors with improved stability and efficiency in both N. benthamiana and tomato plants. By using two of these vectors, we have described characteristic cellular bodies induced by PepMV infection; these bodies are likely the PepMV VRCs.

7.
Biomacromolecules ; 20(1): 469-477, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30516960

RESUMO

Nanoparticles with high aspect ratios have favorable attributes for drug delivery and bioimaging applications based on their enhanced tissue penetration and tumor homing properties. Here, we investigated a novel filamentous viral nanoparticle (VNP) based on the Pepino mosaic virus (PepMV), a relative of the established platform Potato virus X (PVX). We studied the chemical reactivity of PepMV, produced fluorescent versions of PepMV and PVX, and then evaluated their biodistribution in mouse tumor models. We found that PepMV can be conjugated to various small chemical modifiers including fluorescent probes via the amine groups of surface-exposed lysine residues, yielding VNPs carrying payloads of up to 1600 modifiers per particle. Although PepMV and PVX share similarities in particle size and shape, PepMV achieved enhanced tumor homing and less nonspecific tissue distribution compared to PVX in mouse models of triple negative breast cancer and ovarian cancer. In conclusion, PepMV provides a novel tool for nanomedical research but more research is needed to fully exploit the potential of plant VNPs for health applications.


Assuntos
Neoplasias Mamárias Experimentais/diagnóstico por imagem , Nanopartículas/metabolismo , Neoplasias Ovarianas/diagnóstico por imagem , Potexvirus/química , Animais , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/virologia , Distribuição Tecidual , Vírion/química
8.
Sci Adv ; 3(9): eaao2182, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948231

RESUMO

Potyviruses constitute the second largest genus of plant viruses and cause important economic losses in a large variety of crops; however, the atomic structure of their particles remains unknown. Infective potyvirus virions are long flexuous filaments where coat protein (CP) subunits assemble in helical mode bound to a monopartite positive-sense single-stranded RNA [(+)ssRNA] genome. We present the cryo-electron microscopy (cryoEM) structure of the potyvirus watermelon mosaic virus at a resolution of 4.0 Å. The atomic model shows a conserved fold for the CPs of flexible filamentous plant viruses, including a universally conserved RNA binding pocket, which is a potential target for antiviral compounds. This conserved fold of the CP is widely distributed in eukaryotic viruses and is also shared by nucleoproteins of enveloped viruses with segmented (-)ssRNA (negative-sense ssRNA) genomes, including influenza viruses.


Assuntos
Sítios de Ligação , Potyvirus/ultraestrutura , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Proteínas Virais/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo
9.
Elife ; 4: e11795, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26673077

RESUMO

Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Potexvirus/ultraestrutura , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA