Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 24(7): 1157-1170, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35137514

RESUMO

The high tree mortality during the dry and hot years of 2018-2019 in Europe has triggered concerns on the future of European beech (Fagus sylvatica L.) forests under climate change and raised questions as to whether forest management may increase tree mortality. We compared long-term mortality rates of beech between managed and unmanaged stands including the years 2018-2019 at 11 sites in Hesse, Germany. We hypothesized that mortality would increase with climate water deficits during the growing season, initial stand density, decreasing dominance of trees, and decreasing intensity of tree removals. Initial stand density, tree removals, the climate water balance and the competitive status of trees were used as predictor variables. Mean annual natural mortality rates ranged between 0.5% and 2.1%. Even in the drought years, we observed no signs of striking canopy disintegration. The significantly higher mortality (1.6-2.1%) in unmanaged stands during the drought years 2018 and 2019 was largely confined to suppressed trees. There was no significant increase of mortality in managed stands during the drought years, but a shift in mortality towards larger canopy trees. Our study did not confirm a general influence of management, in the form of tree removals, on mortality rates. Yet, we found that during drought years, management changed the distribution of mortality within the tree community. To analyse the effects of management on mortality rates more comprehensively, a wider gradient in site moisture conditions, including sites drier than in this study, and longer post-drought periods should be employed.


Assuntos
Fagus , Secas , Florestas , Árvores , Água
2.
J Microsc ; 232(2): 240-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19017223

RESUMO

Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that utilizes digital holography, allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. The images produced can provide both quantitative and qualitative phase information from a single hologram. The recently constructed microscope Holomonitor (Phase Holographic Imaging AB, Lund, Sweden) combines the commonly used phase contrast microscope with digital holography, the latter giving us the possibility of achieving quantitative information on cellular shape, area, confluence and optical thickness. This project aimed at determining the accuracy and repeatability of cell counting measurements using digital holography compared to the conventional manual cell counting method using a haemocytometer. The collected data were also used to determine cell size and cellular optical thickness. The results show that digital holography can be used for non-invasive automatic cell counting as precisely as conventional manual cell counting.


Assuntos
Adesão Celular , Contagem de Células/métodos , Holografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Linhagem Celular , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA