Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 48: 109184, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234734

RESUMO

This paper describes data from Asfaw at al. [1], which examined the eye movements of glaucoma patients (n=15) with pronounced asymmetrical vision loss (visual field loss worse in one eye). This allows for within-subject comparisons between the better and worse eye, thereby controlling for the effects of individual differences between patients. All patients had a clinical diagnosis of open angle glaucoma (OAG). Participants were asked to look at images of nature monocularly (free viewing; fellow eye patched) while gaze was recorded at 1000 Hz using a remote eye tracker (EyeLink 1000). Raw and processed eye tracking data are provided. In addition, clinical (visual acuity, contrast sensitivity and visual field) and demographic information (age, sex) are provided.

2.
Invest Ophthalmol Vis Sci ; 59(8): 3189-3198, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29971443

RESUMO

Purpose: To investigate whether glaucoma produces measurable changes in eye movements. Methods: Fifteen glaucoma patients with asymmetric vision loss (difference in mean deviation [MD] > 6 dB between eyes) were asked to monocularly view 120 images of natural scenes, presented sequentially on a computer monitor. Each image was viewed twice-once each with the better and worse eye. Patients' eye movements were recorded with an Eyelink 1000 eye-tracker. Eye-movement parameters were computed and compared within participants (better eye versus worse eye). These parameters included a novel measure: saccadic reversal rate (SRR), as well as more traditional metrics such as saccade amplitude, fixation counts, fixation duration, and spread of fixation locations (bivariate contour ellipse area [BCEA]). In addition, the associations of these parameters with clinical measures of vision were investigated. Results: In the worse eye, saccade amplitude\(\def\upalpha{\unicode[Times]{x3B1}}\)\(\def\upbeta{\unicode[Times]{x3B2}}\)\(\def\upgamma{\unicode[Times]{x3B3}}\)\(\def\updelta{\unicode[Times]{x3B4}}\)\(\def\upvarepsilon{\unicode[Times]{x3B5}}\)\(\def\upzeta{\unicode[Times]{x3B6}}\)\(\def\upeta{\unicode[Times]{x3B7}}\)\(\def\uptheta{\unicode[Times]{x3B8}}\)\(\def\upiota{\unicode[Times]{x3B9}}\)\(\def\upkappa{\unicode[Times]{x3BA}}\)\(\def\uplambda{\unicode[Times]{x3BB}}\)\(\def\upmu{\unicode[Times]{x3BC}}\)\(\def\upnu{\unicode[Times]{x3BD}}\)\(\def\upxi{\unicode[Times]{x3BE}}\)\(\def\upomicron{\unicode[Times]{x3BF}}\)\(\def\uppi{\unicode[Times]{x3C0}}\)\(\def\uprho{\unicode[Times]{x3C1}}\)\(\def\upsigma{\unicode[Times]{x3C3}}\)\(\def\uptau{\unicode[Times]{x3C4}}\)\(\def\upupsilon{\unicode[Times]{x3C5}}\)\(\def\upphi{\unicode[Times]{x3C6}}\)\(\def\upchi{\unicode[Times]{x3C7}}\)\(\def\uppsy{\unicode[Times]{x3C8}}\)\(\def\upomega{\unicode[Times]{x3C9}}\)\(\def\bialpha{\boldsymbol{\alpha}}\)\(\def\bibeta{\boldsymbol{\beta}}\)\(\def\bigamma{\boldsymbol{\gamma}}\)\(\def\bidelta{\boldsymbol{\delta}}\)\(\def\bivarepsilon{\boldsymbol{\varepsilon}}\)\(\def\bizeta{\boldsymbol{\zeta}}\)\(\def\bieta{\boldsymbol{\eta}}\)\(\def\bitheta{\boldsymbol{\theta}}\)\(\def\biiota{\boldsymbol{\iota}}\)\(\def\bikappa{\boldsymbol{\kappa}}\)\(\def\bilambda{\boldsymbol{\lambda}}\)\(\def\bimu{\boldsymbol{\mu}}\)\(\def\binu{\boldsymbol{\nu}}\)\(\def\bixi{\boldsymbol{\xi}}\)\(\def\biomicron{\boldsymbol{\micron}}\)\(\def\bipi{\boldsymbol{\pi}}\)\(\def\birho{\boldsymbol{\rho}}\)\(\def\bisigma{\boldsymbol{\sigma}}\)\(\def\bitau{\boldsymbol{\tau}}\)\(\def\biupsilon{\boldsymbol{\upsilon}}\)\(\def\biphi{\boldsymbol{\phi}}\)\(\def\bichi{\boldsymbol{\chi}}\)\(\def\bipsy{\boldsymbol{\psy}}\)\(\def\biomega{\boldsymbol{\omega}}\)\(\def\bupalpha{\unicode[Times]{x1D6C2}}\)\(\def\bupbeta{\unicode[Times]{x1D6C3}}\)\(\def\bupgamma{\unicode[Times]{x1D6C4}}\)\(\def\bupdelta{\unicode[Times]{x1D6C5}}\)\(\def\bupepsilon{\unicode[Times]{x1D6C6}}\)\(\def\bupvarepsilon{\unicode[Times]{x1D6DC}}\)\(\def\bupzeta{\unicode[Times]{x1D6C7}}\)\(\def\bupeta{\unicode[Times]{x1D6C8}}\)\(\def\buptheta{\unicode[Times]{x1D6C9}}\)\(\def\bupiota{\unicode[Times]{x1D6CA}}\)\(\def\bupkappa{\unicode[Times]{x1D6CB}}\)\(\def\buplambda{\unicode[Times]{x1D6CC}}\)\(\def\bupmu{\unicode[Times]{x1D6CD}}\)\(\def\bupnu{\unicode[Times]{x1D6CE}}\)\(\def\bupxi{\unicode[Times]{x1D6CF}}\)\(\def\bupomicron{\unicode[Times]{x1D6D0}}\)\(\def\buppi{\unicode[Times]{x1D6D1}}\)\(\def\buprho{\unicode[Times]{x1D6D2}}\)\(\def\bupsigma{\unicode[Times]{x1D6D4}}\)\(\def\buptau{\unicode[Times]{x1D6D5}}\)\(\def\bupupsilon{\unicode[Times]{x1D6D6}}\)\(\def\bupphi{\unicode[Times]{x1D6D7}}\)\(\def\bupchi{\unicode[Times]{x1D6D8}}\)\(\def\buppsy{\unicode[Times]{x1D6D9}}\)\(\def\bupomega{\unicode[Times]{x1D6DA}}\)\(\def\bupvartheta{\unicode[Times]{x1D6DD}}\)\(\def\bGamma{\bf{\Gamma}}\)\(\def\bDelta{\bf{\Delta}}\)\(\def\bTheta{\bf{\Theta}}\)\(\def\bLambda{\bf{\Lambda}}\)\(\def\bXi{\bf{\Xi}}\)\(\def\bPi{\bf{\Pi}}\)\(\def\bSigma{\bf{\Sigma}}\)\(\def\bUpsilon{\bf{\Upsilon}}\)\(\def\bPhi{\bf{\Phi}}\)\(\def\bPsi{\bf{\Psi}}\)\(\def\bOmega{\bf{\Omega}}\)\(\def\iGamma{\unicode[Times]{x1D6E4}}\)\(\def\iDelta{\unicode[Times]{x1D6E5}}\)\(\def\iTheta{\unicode[Times]{x1D6E9}}\)\(\def\iLambda{\unicode[Times]{x1D6EC}}\)\(\def\iXi{\unicode[Times]{x1D6EF}}\)\(\def\iPi{\unicode[Times]{x1D6F1}}\)\(\def\iSigma{\unicode[Times]{x1D6F4}}\)\(\def\iUpsilon{\unicode[Times]{x1D6F6}}\)\(\def\iPhi{\unicode[Times]{x1D6F7}}\)\(\def\iPsi{\unicode[Times]{x1D6F9}}\)\(\def\iOmega{\unicode[Times]{x1D6FA}}\)\(\def\biGamma{\unicode[Times]{x1D71E}}\)\(\def\biDelta{\unicode[Times]{x1D71F}}\)\(\def\biTheta{\unicode[Times]{x1D723}}\)\(\def\biLambda{\unicode[Times]{x1D726}}\)\(\def\biXi{\unicode[Times]{x1D729}}\)\(\def\biPi{\unicode[Times]{x1D72B}}\)\(\def\biSigma{\unicode[Times]{x1D72E}}\)\(\def\biUpsilon{\unicode[Times]{x1D730}}\)\(\def\biPhi{\unicode[Times]{x1D731}}\)\(\def\biPsi{\unicode[Times]{x1D733}}\)\(\def\biOmega{\unicode[Times]{x1D734}}\)\((P = 0.012; - 13\% \)) and BCEA \((P = 0.005; - 16\% )\) were smaller, while SRR was greater (\(P = 0.018; + 16\% \)). There was a significant correlation between the intereye difference in BCEA, and differences in MD values (\({\rm{Spearman^{\prime} s}}\ r = 0.65;P = 0.01\)), while differences in SRR were associated with differences in visual acuity (\({\rm{Spearman^{\prime} s}}\ r = 0.64;P = 0.01\)). Furthermore, between-eye differences in BCEA were a significant predictor of between-eye differences in MD: for every 1-dB difference in MD, BCEA reduced by 6.2% (95% confidence interval, 1.6%-10.3%). Conclusions: Eye movements are altered by visual field loss, and these changes are related to changes in clinical measures. Eye movements recorded while passively viewing images could potentially be used as biomarkers for visual field damage.


Assuntos
Glaucoma de Ângulo Aberto/fisiopatologia , Movimentos Sacádicos/fisiologia , Transtornos da Visão/fisiopatologia , Campos Visuais/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Visão Binocular/fisiologia , Acuidade Visual/fisiologia , Percepção Visual/fisiologia
3.
Invest Ophthalmol Vis Sci ; 58(2): 868-875, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159974

RESUMO

Purpose: Peripheral vision is important for mobility, balance, and guidance of attention, but standard perimetry examines only <20% of the entire visual field. We report on the relation between central and peripheral visual field damage, and on retest variability, with a simple approach for automated kinetic perimetry (AKP) of the peripheral field. Methods: Thirty patients with glaucoma (median age 68, range 59-83 years; median Mean Deviation -8.0, range -16.3-0.1 dB) performed AKP and static automated perimetry (SAP) (German Adaptive Threshold Estimation strategy, 24-2 test). Automated kinetic perimetry consisted of a fully automated measurement of a single isopter (III.1.e). Central and peripheral visual fields were measured twice on the same day. Results: Peripheral and central visual fields were only moderately related (Spearman's ρ, 0.51). Approximately 90% of test-retest differences in mean isopter radius were < ±4 deg. Relative to the range of measurements in this sample, the retest variability of AKP was similar to that of SAP. Conclusions: Patients with similar central visual field loss can have strikingly different peripheral visual fields, and therefore measuring the peripheral visual field may add clinically valuable information.


Assuntos
Glaucoma/diagnóstico , Transtornos da Visão/diagnóstico , Testes de Campo Visual/métodos , Campos Visuais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Glaucoma/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Escotoma/diagnóstico , Transtornos da Visão/etiologia , Testes de Campo Visual/normas
4.
J Ophthalmol ; 2014: 120528, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24883203

RESUMO

Reading is often cited as a demanding task for patients with glaucomatous visual field (VF) loss, yet reading speed varies widely between patients and does not appear to be predicted by standard visual function measures. This within-person study aimed to investigate reading duration and eye movements when reading short passages of text in a patient's worse eye (most VF damage) when compared to their better eye (least VF damage). Reading duration and saccade rate were significantly different on average in the worse eye when compared to the better eye (P < 0.001) in 14 patients with glaucoma that had median (interquartile range) between-eye difference in mean deviation (MD; a standard clinical measure for VF loss) of 9.8 (8.3 to 14.8) dB; differences were not related to the size of the difference in MD between eyes. Patients with a more pronounced effect of longer reading duration on their worse eye made a larger proportion of "regressions" (backward saccades) and "unknown" EMs (not adhering to expected reading patterns) when reading with the worse eye when compared to the better eye. A between-eye study in patients with asymmetric disease, coupled with eye tracking, provides a useful experimental design for exploring reading performance in glaucoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA