Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0005724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526080

RESUMO

Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.


Assuntos
Antibacterianos , Citrobacter rodentium , Infecções por Enterobacteriaceae , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Citrobacter rodentium/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/efeitos adversos , Fezes/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Enrofloxacina/farmacologia , Enrofloxacina/uso terapêutico , Feminino , Modelos Animais de Doenças , Disbiose/microbiologia
2.
FEBS J ; 290(22): 5292-5294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735823

RESUMO

NOD1 is a cytosolic immune receptor well known for recognizing intracellular bacteria and inducing innate immune responses. Upon ligand binding, it usually forms a complex with the serine/threonine kinase RIPK2 to activate the transcription factor NF-κB. Next to its role in pathogen recognition, NOD1 has been associated with cancer progression. In this regard, Hezinger et al. investigated a non-canonical role of NOD1 in cell migration. They discovered that NOD1 is crucial for the migration and chemotaxis of HeLa cells and identified HAX-1 as a novel interaction partner.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , Células HeLa , NF-kappa B/genética , NF-kappa B/metabolismo , Imunidade Inata , Movimento Celular , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo
3.
Front Cell Infect Microbiol ; 12: 1065561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704108

RESUMO

Infections caused by Gram-negative pathogens pose a major health burden. Both respiratory and gastrointestinal infections are commonly associated with these pathogens. With the increase in antimicrobial resistance (AMR) over the last decades, bacterial infections may soon become the threat they have been before the discovery of antibiotics. Many Gram-negative pathogens encode virulence-associated Type III and Type IV secretion systems, which they use to inject bacterial effector proteins across bacterial and host cell membranes into the host cell cytosol, where they subvert host cell functions in favor of bacterial replication and survival. These secretion systems are essential for the pathogens to cause disease, and secretion system mutants are commonly avirulent in infection models. Hence, these structures present attractive targets for anti-virulence therapies. Here, we review previously and recently identified inhibitors of virulence-associated bacterial secretions systems and discuss their potential as therapeutics.


Assuntos
Bactérias , Sistemas de Secreção Tipo IV , Virulência , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Sistemas de Secreção Tipo III/metabolismo
4.
Antimicrob Agents Chemother ; 65(12): e0095821, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543097

RESUMO

Infections with enteropathogenic Escherichia coli (EPEC) cause severe diarrhea in children. The noninvasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir (translocated intimin receptor). Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. In addition, these substances reduced bacterial binding to host cells, effector-dependent cell detachment, and abolished attaching and effacing lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and enterohemorrhagic E. coli infections.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Sistemas de Secreção Tipo III/genética , Virulência
5.
Pathogens ; 10(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499114

RESUMO

Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.

6.
EMBO J ; 40(4): e105202, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33410511

RESUMO

Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused ß-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carcinoma de Células Escamosas/patologia , Citosol/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Neoplasias Laríngeas/patologia , Yersinia pseudotuberculosis/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transporte Biológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Cristalização , Cristalografia por Raios X , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/microbiologia , Conformação Proteica , Células Tumorais Cultivadas
7.
Future Microbiol ; 15: 945-958, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716209

RESUMO

The innate immune response resembles an essential barrier to bacterial infection. Many bacterial pathogens have, therefore, evolved mechanisms to evade from or subvert the host immune response in order to colonize, survive and multiply. The attaching and effacing pathogens enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Escherichia albertii and Citrobacter rodentium are Gram-negative extracellular gastrointestinal pathogens. They use a type III secretion system to inject effector proteins into the host cell to manipulate a variety of cellular processes. Over the last decade, considerable progress was made in identifying and characterizing the effector proteins of attaching and effacing pathogens that are involved in the inhibition of innate immune signaling pathways, in determining their host cell targets and elucidating the mechanisms they employ. Their functions will be reviewed here.


Assuntos
Infecções Bacterianas/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/imunologia , Imunidade Inata , Apoptose , Infecções Bacterianas/microbiologia , Citrobacter rodentium/patogenicidade , Citocinas , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Escherichia/patogenicidade , Infecções por Escherichia coli/microbiologia , Inflamassomos , Necroptose , Transdução de Sinais , Sistemas de Secreção Tipo III , Fatores de Virulência/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32435624

RESUMO

Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Idoso , Animais , Criança , Diarreia , Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/terapia , Humanos , Toxina Shiga
9.
PLoS Pathog ; 16(3): e1008448, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208465

RESUMO

The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32015030

RESUMO

Infections with enterohemorrhagic Escherichia coli (EHEC) cause disease ranging from mild diarrhea to hemolytic-uremic syndrome (HUS) and are the most common cause of renal failure in children in high-income countries. The severity of the disease derives from the release of Shiga toxins (Stx). The use of antibiotics to treat EHEC infections is generally avoided, as it can result in increased stx expression. Here, we systematically tested different classes of antibiotics and found that their influence on stx expression and release varies significantly. We assessed a selection of these antibiotics in vivo using the Citrobacter rodentium ϕstx2dact mouse model and show that stx2d-inducing antibiotics resulted in weight loss and kidney damage despite clearance of the infection. However, several non-Stx-inducing antibiotics cleared bacterial infection without causing Stx-mediated pathology. Our results suggest that these antibiotics might be useful in the treatment of EHEC-infected human patients and decrease the risk of HUS development.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antibacterianos/uso terapêutico , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Toxina Shiga II/metabolismo , Injúria Renal Aguda/microbiologia , Animais , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Toxina Shiga II/genética , Toxina Shiga II/toxicidade
11.
PLoS Pathog ; 16(1): e1008184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951643

RESUMO

Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host's innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5'-untranslated region (5'-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5'-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens.


Assuntos
Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/metabolismo , Regiões 5' não Traduzidas , Animais , Toxinas Bacterianas/química , Feminino , Humanos , Sequências Repetidas Invertidas , Camundongos , Camundongos Endogâmicos BALB C , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Temperatura , Virulência , Yersinia pseudotuberculosis/química , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidade
12.
Emerg Microbes Infect ; 7(1): 203, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30514915

RESUMO

A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11-61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.


Assuntos
Aderência Bacteriana , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Toxina Shiga/genética , Técnicas de Tipagem Bacteriana , Escherichia coli Êntero-Hemorrágica/metabolismo , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Fímbrias Bacterianas/metabolismo , Genoma Bacteriano , Humanos , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Sorogrupo , Virulência
13.
Front Microbiol ; 8: 803, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529506

RESUMO

The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.

15.
Nat Microbiol ; 2: 16258, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28085133

RESUMO

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-ß (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1-3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.


Assuntos
Apoptose , Proteínas de Escherichia coli/metabolismo , Inflamação , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular , Citrobacter rodentium/patogenicidade , Cisteína Proteases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sistemas de Secreção Tipo III
16.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872241

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that utilizes a type III secretion system (T3SS) to inject an array of virulence effector proteins into host enterocytes to subvert numerous cellular processes for successful colonization and dissemination. The T3SS effector NleD is a 26-kDa zinc metalloprotease that is translocated into host enterocytes, where it directly cleaves and inactivates the mitogen-activated protein kinase signaling proteins JNK and p38. Here a library of 91 random transposon-based, in-frame, linker insertion mutants of NleD were tested for their ability to cleave JNK and p38 during transient transfection of cultured epithelial cells. Immunoblot analysis of p38 and JNK cleavage showed that 7 mutant derivatives of NleD no longer cleaved p38 but maintained the ability to cleave JNK. Site-directed mutation of specific regions surrounding the insertion sites within NleD revealed that a single amino acid, R203, was essential for cleavage of p38 but not JNK in a direct in vitro cleavage assay, in transiently transfected cells, or in EPEC-infected cells. Mass spectrometry analysis narrowed the cleavage region to within residues 187 and 213 of p38. Mutation of residue R203 within NleD to a glutamate residue abolished the cleavage of p38 and impaired the ability of NleD to inhibit AP-1-dependent gene transcription of a luciferase reporter. Furthermore, the R203 mutation abrogated the ability of NleD to dampen interleukin-6 production in EPEC-infected cells. Overall, this work provides greater insight into substrate recognition and specificity by the type III effector NleD.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Linhagem Celular , Citocinas/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Mutagênese Insercional , Proteólise , Transdução de Sinais
17.
J Biol Chem ; 291(38): 20149-62, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27445336

RESUMO

The type III secretion system effector protein NleE from enteropathogenic Escherichia coli plays a key role in the inhibition of NF-κB activation during infection. NleE inactivates the ubiquitin chain binding activity of host proteins TAK1-binding proteins 2 and 3 (TAB2 and TAB3) by modifying the Npl4 zinc finger domain through S-adenosyl methionine-dependent cysteine methylation. Using yeast two-hybrid protein interaction studies, we found that a conserved region between amino acids 34 and 52 of NleE, in particular the motif (49)GITR(52), was critical for TAB2 and TAB3 binding. NleE mutants lacking (49)GITR(52) were unable to methylate TAB3, and wild type NleE but not NleE(49AAAA52) where each of GITR was replaced with alanine restored the ability of an nleE mutant to inhibit IL-8 production during infection. Another NleE target, ZRANB3, also associated with NleE through the (49)GITR(52) motif. Ectopic expression of an N-terminal fragment of NleE (NleE(34-52)) in HeLa cells showed competitive inhibition of wild type NleE in the suppression of IL-8 secretion during enteropathogenic E. coli infection. Similar results were observed for the NleE homologue OspZ from Shigella flexneri 6 that also bound TAB3 through the (49)GITR(52) motif and decreased IL-8 transcription through modification of TAB3. In summary, we have identified a unique substrate-binding motif in NleE and OspZ that is required for the ability to inhibit the host inflammatory response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Disenteria Bacilar/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Shigella flexneri/metabolismo , Fatores de Virulência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , DNA Helicases/genética , Disenteria Bacilar/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Shigella flexneri/genética
18.
Curr Top Microbiol Immunol ; 398: 147-183, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942418

RESUMO

Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Animais , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Cell Microbiol ; 17(12): 1766-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26096513

RESUMO

Upon infection of epithelial cells, enteropathogenic Escherichia coli suppresses host cell inflammatory signalling in a type III secretion system (T3SS) dependent manner. Two key T3SS effector proteins involved in this response are NleE and NleC. NleC is a zinc metalloprotease effector that degrades the p65 subunit of NF-κB. Although the site of p65 cleavage by NleC is now well described, other areas of interaction have not been precisely defined. Here we constructed overlapping truncations of p65 to identify regions required for NleC cleavage. We determined that NleC cleaved both p65 and p50 within the Rel homology domain (RHD) and that two motifs, E22IIE25 and P177VLS180 , within the RHD of p65 were important for recognition and binding by NleC. Alanine substitution of one or both of these motifs protected p65 from binding and degradation by NleC. The E22IIE25 and P177VLS180 motifs were located within the structurally distinct N-terminal subdomain of the RHD involved in DNA binding by p65 on adjacent, parallel strands. Although these motifs have not been recognized previously, both were needed for the correct localization and function of p65. In summary, this work has identified two regions of p65 within the RHD needed for binding and cleavage by NleC and provides further insight into the molecular basis of substrate recognition by a T3SS effector.


Assuntos
Escherichia coli Enteropatogênica/enzimologia , Proteínas de Escherichia coli/metabolismo , Metaloproteases/metabolismo , Fator de Transcrição RelA/metabolismo , Motivos de Aminoácidos , Análise Mutacional de DNA , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Fator de Transcrição RelA/genética
20.
Nat Commun ; 6: 6442, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25778803

RESUMO

Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2 (RIPK2) is critical for NOD-mediated NF-κB activation and cytokine production. Here we develop and characterize a selective RIPK2 kinase inhibitor, WEHI-345, which delays RIPK2 ubiquitylation and NF-κB activation downstream of NOD engagement. Despite only delaying NF-κB activation on NOD stimulation, WEHI-345 prevents cytokine production in vitro and in vivo and ameliorates experimental autoimmune encephalomyelitis in mice. Our study highlights the importance of the kinase activity of RIPK2 for proper immune responses and demonstrates the therapeutic potential of inhibiting RIPK2 in NOD-driven inflammatory diseases.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Trifosfato de Adenosina/química , Animais , Cromatografia Líquida , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Sistema Imunitário , Concentração Inibidora 50 , Interferon gama/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , NF-kappa B/metabolismo , Ligação Proteica , Conformação Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA