Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
2.
Biomed Pharmacother ; 177: 117033, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941889

RESUMO

Melanoma cells express high levels of CD73 that produce extracellular immunosuppressive adenosine. Changes in the CD73 expression occur in response to tumor environmental factors, contributing to tumor phenotype plasticity and therapeutic resistance. Previously, we have observed that CD73 expression can be up-regulated on the surface of melanoma cells in response to nutritional stress. Here, we explore the mechanism by which melanoma cells release soluble CD73 under low nutrient availability and whether this might be affected by agents targeting the proto-oncogene B-Raf (BRAF). We found that starved melanoma cells can release high levels of CD73, able to convert AMP into adenosine, and this activity is abrogated by selective CD73 inhibitors, APCP or PSB-12489. The release of CD73 from melanoma cells is mediated by the matrix metalloproteinase MMP-9. Indeed, MMP-9 inhibitors significantly reduce the levels of CD73 released from the cells, while its surface levels increase. Of relevance, melanoma cells, harboring an activating BRAF mutation, upon treatment with dabrafenib or vemurafenib, show a strong reduction of CD73 cell expression and reduced levels of CD73 released into the extracellular space. Conversely, melanoma cells resistant to dabrafenib show high expression of membrane-bound CD73 and soluble CD73 released into the culture medium. In summary, our data indicate that CD73 is released from melanoma cells. The expression of CD73 is associated with response to BRAF inhibitors. Melanoma cells developing resistance to dabrafenib show increased expression of CD73, including soluble CD73 released from cells, suggesting that CD73 is involved in acquiring resistance to treatment.

3.
J Med Chem ; 67(12): 9896-9926, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885438

RESUMO

The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in ß-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células HEK293 , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia , Dronabinol/análogos & derivados , Dronabinol/química
5.
Purinergic Signal ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795223

RESUMO

P2X4 receptors are ATP-gated cation channels that were proposed as novel drug targets due to their role in inflammation and neuropathic pain. Only few potent and selective P2X4 receptor antagonists have been described to date. Labeled tool compounds suitable for P2X4 receptor binding studies are lacking. Here, we present a novel allosteric P2X4 receptor antagonist possessing high potency in the low nanomolar range. We describe its tritium-labeling resulting in the P2X4-selective radiotracer [3H]PSB-OR-2020 with high specific activity (45 Ci/mmol; 1.67 TBq/mmol). A radioligand binding assay was developed using human embryonic kidney (HEK293) cell membranes recombinantly expressing the human P2X4 receptor. Competition binding studies with structurally diverse P2X4 receptor antagonists revealed different allosteric binding sites indicating that the new class of P2X4 receptor antagonists, to which PSB-OR-2020 belongs, interacts with an unprecedented allosteric site. [3H]PSB-OR-2020 may become a useful tool for research on P2X4 receptors and for promoting drug development.

6.
J Med Chem ; 67(11): 8757-8790, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38753594

RESUMO

Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Nitrilas , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/síntese química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Relação Estrutura-Atividade , Humanos , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Peptidomiméticos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/síntese química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química
7.
ACS Pharmacol Transl Sci ; 7(5): 1415-1425, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751633

RESUMO

The adenosine A2A receptor (A2AAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family, which constitutes the largest class of GPCRs. Partial agonists show reduced efficacy as compared to physiological agonists and can even act as antagonists in the presence of a full agonist. Here, we determined an X-ray crystal structure of the partial A2AAR agonist 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-p-hydroxyphenyl-3,5-pyridinedicarbonitrile (LUF5834) in complex with the A2AAR construct A2A-PSB2-bRIL, stabilized in its inactive conformation and being devoid of any mutations in the ligand binding pocket. The determined high-resolution structure (2.43 Å) resolved water networks and crucial binding pocket interactions. A direct hydrogen bond of the p-hydroxy group of LUF5834 with T883.36 was observed, an amino acid that was mutated to alanine in the most frequently used A2AAR crystallization constructs thus preventing the discovery of its interactions in most of the previous A2AAR co-crystal structures. G protein dissociation studies confirmed partial agonistic activity of LUF5834 as compared to that of the full agonist N-ethylcarboxamidoadenosine (NECA). In contrast to NECA, the partial agonist was still able to bind to the receptor construct locked in its inactive conformation by an S913.39K mutation, although with an affinity lower than that at the native receptor. This could explain the compound's partial agonistic activity: while full A2AAR agonists bind exclusively to the active conformation, likely following conformational selection, partial agonists bind to active as well as inactive conformations, showing higher affinity for the active conformation. This might be a general mechanism of partial agonism also applicable to other GPCRs.

8.
Acta Pharm Sin B ; 14(5): 2349-2357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799620

RESUMO

A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.

9.
ACS Chem Biol ; 19(5): 1028-1034, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668705

RESUMO

The 3CL protease (3CLpro) is a viral cysteine protease of SARS-CoV-2 and is responsible for the main processing of the viral polyproteins involved in viral replication and proliferation. Despite the importance of 3CLpro as a drug target, the intracellular dynamics of active 3CLpro, including its expression and subcellular localization in SARS-CoV-2-infected cells, are poorly understood. Herein, we report an activity-based probe (ABP) with a clickable alkyne and an irreversible warhead for the SARS-CoV-2 3CL protease. We designed and synthesized two ABPs that contain a chloromethyl ketone (probe 2) or 2,6-dichlorobenzoyloxymethyl ketone (probe 3) reactive group at the P1' site. Labeling of recombinant 3CLpro by the ABPs in the purified and proteome systems revealed that probe 3 displayed ligand-directed and selective labeling against 3CLpro. Labeling of transiently expressed active 3CLpro in COS-7 cells also validated the good target selectivity of probe 3 for 3CLpro. We finally demonstrated that endogenously expressed 3CLpro in SARS-CoV-2-infected cells can be detected by fluorescence microscopy imaging using probe 3, suggesting that active 3CLpro at 5 h postinfection is localized in the juxtanuclear region. To the best of our knowledge, this is the first report investigating the subcellular localization of active 3CLpro by using ABPs. We believe that probe 3 will be a useful chemical tool for acquiring important biological knowledge of active 3CLpro in SARS-CoV-2-infected cells.


Assuntos
Proteases 3C de Coronavírus , SARS-CoV-2 , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/metabolismo , Chlorocebus aethiops , Animais , Células COS , Humanos , Cetonas/química , Cetonas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Sondas Moleculares/química
10.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628790

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

12.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456628

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Assuntos
Química Farmacêutica , Poder Psicológico , Humanos , Feminino
13.
ACS Pharmacol Transl Sci ; 7(2): 493-514, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357286

RESUMO

Cathepsins (Cats) are proteases that mediate the successful entry of SARS-CoV-2 into host cells. We designed and synthesized a tailored series of 21 peptidomimetics and evaluated their inhibitory activity against human cathepsins L, B, and S. Structural diversity was realized by combinations of different C-terminal warhead functions and N-terminal capping groups, while a central Leu-Phe fragment was maintained. Several compounds were identified as promising cathepsin L and S inhibitors with Ki values in the low nanomolar to subnanomolar range, for example, the peptide aldehydes 9a and 9b (9a, 2.67 nM, CatL; 0.455 nM, CatS; 9b, 1.76 nM, CatL; 0.512 nM, CatS). The compounds' inhibitory activity against the main protease of SARS-CoV-2 (Mpro) was additionally investigated. Based on the results at CatL, CatS, and Mpro, selected inhibitors were subjected to investigations of their antiviral activity in cell-based assays. In particular, the peptide nitrile 11e exhibited promising antiviral activity with an EC50 value of 38.4 nM in Calu-3 cells without showing cytotoxicity. High metabolic stability and favorable pharmacokinetic properties make 11e suitable for further preclinical development.

14.
Sci Rep ; 14(1): 118, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167954

RESUMO

Suberin, a complex biopolymer, forms a water- and gas-insoluble barrier that protects the inner tissues of plants. It is abundant in tree bark, particularly in the cork oak Quercus suber. Anatomically, fossil bark has been described since the Devonian. However, its distinctive constituent suberin has not yet been reported from the fossil record. Here we present unambiguous chemical evidence for intact suberin from the bark of a middle Eocene monkeyhair tree from Geiseltal, eastern Germany. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) detected constituents of suberin in the outer layer the fossil monkeyhair tree, which confirms previous morphological interpretation of this tissue as bark, and chemically differentiates this layer from the two tissues of the inner layer. Notably, this is the first study with compelling chemical evidence for suberin in fossil bark. Fluorescence microspectroscopy additionally supports the presence of suberin. Fossilization conditions in the Eocene Geiseltal deposit were likely mild, with low moisture and temperatures, contributing to the remarkable preservation of bark and inner laticifer mats of the monkeyhair trees growing there 45 million years ago.


Assuntos
Quercus , Árvores , Casca de Planta , Lipídeos/química , Alemanha , Quercus/química
16.
Commun Biol ; 7(1): 52, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184723

RESUMO

Patients with idiopathic pulmonary fibrosis show a strongly upregulated expression of chemokine CXCL14, whose target is still unknown. Screening of CXCL14 in a panel of human G protein-coupled receptors (GPCRs) revealed its potent and selective activation of the orphan MAS-related GPCR X2 (MRGPRX2). This receptor is expressed on mast cells and - like CXCL14 - upregulated in bronchial inflammation. CXCL14 induces robust activation of MRGPRX2 and its putative mouse ortholog MRGPRB2 in G protein-dependent and ß-arrestin recruitment assays that is blocked by a selective MRGPRX2/B2 antagonist. Truncation combined with mutagenesis and computational studies identified the pharmacophoric sequence of CXCL14 and its presumed interaction with the receptor. Intriguingly, C-terminal domain sequences of CXCL14 consisting of 4 to 11 amino acids display similar or increased potency and efficacy compared to the full CXCL14 sequence (77 amino acids). These results provide a rational basis for the future development of potential idiopathic pulmonary fibrosis therapies.


Assuntos
Quimiocinas , Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Aminoácidos , Bioensaio , Quimiocinas CXC , Fibrose Pulmonar Idiopática/genética , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos
17.
Nat Chem ; 16(2): 249-258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857844

RESUMO

Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.


Assuntos
Nucleosídeos , Nucleotídeos , Nucleosídeos/química , Nucleotídeos/química , Polifosfatos , Bioquímica
19.
J Med Chem ; 66(23): 15674-15698, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967029

RESUMO

The MAS-related Gq protein-coupled receptor X4 (MRGPRX4) is poorly investigated. MRGPRX4 has been proposed to be involved in pain transmission, itch, inflammation, wound healing, and cancer. However, so far only a few moderately potent, nonselective MRGPRX4 agonists have been described, most of which appear to preferably activate the minor receptor variant MRGPRX4-83L but not the main variant 83S. In the present study, we discovered a xanthine derivative bearing a phosphate substituent that activates the main variant of MRGPRX4. Optimization resulted in analogs with high potency and metabolic stability. The best compounds of the present series include 8-(m-methoxyphenethyl)-1-propargylxanthine substituted with a butyl linker in the 3-position containing a terminal phosphonate (30d, PSB-22034, EC50 Ca2+ assay/ß-arrestin assay, 11.2 nM/32.0 nM) and its N7-methyl derivative 31d (PSB-22040, EC50, 19.2/30.0 nM) showing high selectivity versus all other MRGPRX subtypes. They present promising tool compounds for exploring the potential of MRGPRX4 as a future drug target.


Assuntos
Receptores Acoplados a Proteínas G , Xantinas , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Prurido
20.
J Med Chem ; 66(23): 16426-16440, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992202

RESUMO

The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 µM) and exhibited excellent antiviral activity (EC50 = 0.40 µM), reaching the same level as Nirmatrelvir (EC50 = 0.38 µM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/química , Piperazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA