Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4179, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755161

RESUMO

The global energy transition relies increasingly on lithium-ion batteries for electric transportation and renewable energy integration. Given the highly concentrated supply chain of battery materials, importing regions have a strategic imperative to reduce their reliance on battery material imports through, e.g., battery recycling or reuse. We investigate the potential of vehicle-to-grid and second-life batteries to reduce resource use by displacing new stationary batteries dedicated to grid storage. Based on dynamic material flow analysis, we show that equipping around 50% of electric vehicles with vehicle-to-grid or reusing 40% of electric vehicle batteries for second life each have the potential to fully cover the European Union's need for stationary storage by 2040. This could reduce total primary material demand from 2020-2050 by up to 7.5% and 1.5%, respectively, which could ease geopolitical risks and increase the European Union's energy and material security. Any surplus capacity could be used as a strategic reserve to increase resilience in the face of emergencies such as blackouts or adverse geo-political events.

2.
Environ Sci Technol ; 58(2): 971-990, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166114

RESUMO

Global resource extraction raises concerns about environmental pressures and the security of mineral supply. Strategies to address these concerns depend on robust information on natural resource endowments, and on suitable methods to monitor and model their changes over time. However, current mineral resources and reserves reporting and accounting workflows are poorly suited for addressing mineral depletion or answering questions about the long-term sustainable supply. Our integrative review finds that the lack of a robust theoretical concept and framework for mass-balance (MB)-consistent geological stock accounting hinders systematic industry-government data integration, resource governance, and strategy development. We evaluate the existing literature on geological stock accounting, identify shortcomings of current monitoring of mine production, and outline a conceptual framework for MB-consistent system integration based on material flow analysis (MFA). Our synthesis shows that recent developments in Earth observation, geoinformation management, and sustainability reporting act as catalysts that make MB-consistent geological stock accounting increasingly feasible. We propose first steps for its implementation and anticipate that our perspective as "resource realists" will facilitate the integration of geological and anthropogenic material systems, help secure future mineral supply, and support the global sustainability transition.


Assuntos
Conservação dos Recursos Naturais , Minerais , Conservação dos Recursos Naturais/métodos
3.
Nat Commun ; 13(1): 1341, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292628

RESUMO

In recent years, increasing attention has been given to the potential supply risks of critical battery materials, such as cobalt, for electric mobility transitions. While battery technology and recycling advancement are two widely acknowledged strategies for addressing such supply risks, the extent to which they will relieve global and regional cobalt demand-supply imbalance remains poorly understood. Here, we address this gap by simulating historical (1998-2019) and future (2020-2050) global cobalt cycles covering both traditional and emerging end uses with regional resolution (China, the U.S., Japan, the EU, and the rest of the world). We show that cobalt-free batteries and recycling progress can indeed significantly alleviate long-term cobalt supply risks. However, the cobalt supply shortage appears inevitable in the short- to medium-term (during 2028-2033), even under the most technologically optimistic scenario. Our results reveal varying cobalt supply security levels by region and indicate the urgency of boosting primary cobalt supply to ensure global e-mobility ambitions.


Assuntos
Cobalto , Lítio , Fontes de Energia Elétrica , Reciclagem , Tecnologia
4.
Environ Sci Technol ; 56(3): 1973-1982, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042334

RESUMO

Greenhouse gas (GHG) accounting in industrial plants usually has multiple purposes, including mandatory reporting, shareholder and stakeholder communication, developing key performance indicators (KPIs), or informing cost-effective mitigation options. Current carbon accounting systems, such as the one required by the European Union Emission Trading Scheme (EU ETS), ignore the system context in which emissions occur. This hampers the identification and evaluation of comprehensive mitigation strategies considering linkages between materials, energy, and emissions. Here, we propose a carbon accounting method based on multilevel material flow analysis (MFA), which aims at addressing this gap. Using a Norwegian primary aluminum production plant as an example, we analyzed the material stocks and flows within this plant for total mass flows of goods as well as substances such as aluminum and carbon. The results show that the MFA-based accounting (i) is more robust than conventional tools due to mass balance consistency and higher granularity, (ii) allows monitoring the performance of the company and defines meaningful KPIs, (iii) can be used as a basis for the EU ETS reporting and linked to internal reporting, (iv) enables the identification and evaluation of systemic solutions and resource efficiency strategies for reducing emissions, and (v) has the potential to save costs.


Assuntos
Alumínio , Gases de Efeito Estufa , Carbono/análise , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Instalações Industriais e de Manufatura
5.
ISME J ; 13(7): 1878-1882, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30894689

RESUMO

Bacterial adhesion is the initial step in surface colonization and community formation. At the single-cell level, atomic force microscopy (AFM) techniques have enabled the quantification of adhesive forces between bacteria and substrata. However, conventional techniques depend on the irreversible immobilization of cells onto cantilevers, thus hampering throughput. Here, we developed a modular AFM method to reversibly immobilize functionalized beads as surface mimic and to probe adhesion of individual bacteria. We performed single-cell force spectroscopies with phylogenetically diverse leaf isolates of various size and morphology. Adhesion measurement of 28 bacterial strains revealed large differences in hydrophobic interactions of about three orders of magnitude. The highest adhesion forces of up to 50 nN were recorded for members of the Gammaproteobacteria. The hydrophobicity of the different isolates correlated positively with the retention of bacteria observed in planta and might provide a basis for successful leaf colonization and potentially disease outbreaks of pathogens.


Assuntos
Arabidopsis/microbiologia , Aderência Bacteriana , Gammaproteobacteria/fisiologia , Microbiota/fisiologia , Microscopia de Força Atômica/métodos , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Microbiota/genética , Filogenia , Folhas de Planta/microbiologia , Propriedades de Superfície
6.
Nat Microbiol ; 3(8): 909-919, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038309

RESUMO

Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.


Assuntos
Arabidopsis/microbiologia , Bactérias/classificação , Produtos Biológicos/metabolismo , Vias Biossintéticas , Antibacterianos/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Mineração de Dados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Família Multigênica , Filogenia , Folhas de Planta/microbiologia , Análise de Sequência de DNA/métodos
7.
Sci Total Environ ; 615: 219-227, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972899

RESUMO

Increased nutrient cycling in the agri-food system is a way to achieve a healthier nutrient stewardship and more sustainable food production. In life cycle assessment (LCA) studies, use of recycled fertilizer products is often credited by the substitution method, which subtracts the environmental burdens associated with avoided production of mineral fertilizer from the system under study. The environmental benefits from avoided fertilizer production can make an important contribution to the results, but different calculation principles and often implicit assumptions are used to estimate the amount of avoided mineral fertilizer. This may hinder comparisons between studies. The present study therefore examines how the choice of substitution principles influences LCA results. Three different substitution principles, called one-to-one, maintenance, and adjusted maintenance, are identified, and we test the importance of these in a case study on cattle slurry management. We show that the inventory of avoided mineral fertilizer varies greatly when the different principles are applied, with strong influences on two-thirds of LCA impact categories. With the one-to-one principle, there is a risk of systematically over-estimating the environmental benefits from nutrient cycling. In a sensitivity analysis we show that the difference between the principles is closely related to the application rate and levels of residual nutrients in the soil. We recommend that LCA practitioners first and foremost state and justify the substitution method they use, in order to increase transparency and comparability with other studies.


Assuntos
Agricultura/métodos , Fertilizantes , Minerais/análise , Animais , Bovinos , Solo/química
8.
Environ Sci Technol ; 51(19): 11468-11475, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836769

RESUMO

Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO2 uptake potentials of cement based products and infrastructure in service.


Assuntos
Dióxido de Carbono , Países em Desenvolvimento , Urbanização , China , Cidades , Indústrias
9.
Cell Host Microbe ; 22(2): 142-155, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28799900

RESUMO

Plant microbiome research highlights the importance of indigenous microbial communities for host phenotypes such as growth and health. It aims to discover the molecular basis by which host-microbe and microbe-microbe interactions shape and maintain microbial communities and to understand the role of individual microorganisms, as well as their collective ecosystem function. Here, we discuss reductionist approaches to disentangle the inherent complexity of interactions in situ. Experimentally tractable, synthetic communities enable testing of hypotheses by targeted manipulation in gnotobiotic systems. Modifications of microbial, host, and environmental parameters allow for the quantitative assessment of host and microbe characteristics with dynamic and spatial resolution. We summarize first insights from this emerging field and discuss current challenges and limitations. Using multifaceted approaches to detect interactions and functions will provide new insights into the fundamental biology of plant-microbe interactions and help to harness the power of the microbiome.


Assuntos
Microbiota , Plantas/microbiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Ecossistema , Interações Hospedeiro-Patógeno , Metagenoma , Consórcios Microbianos/fisiologia , Interações Microbianas , Microbiota/genética , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo
10.
Environ Sci Technol ; 51(3): 1129-1139, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28099815

RESUMO

One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5-2+3 t precious metals in controllers embedded in all vehicle types and 220-60+90 t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.


Assuntos
Metais , Reciclagem/economia , Automóveis , Eletrônica , Meio Ambiente
11.
Sci Total Environ ; 575: 1546-1555, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27745928

RESUMO

The plant-availability of phosphorus (P) plays a central role in the ability of secondary P resources to replace mineral fertilizer. This is because secondary P plant-availability varies, often with large fractions of residual P that has no immediate fertilization effect. Therefore, if low quality secondary P fertilizers are applied, they will accumulate in soils that, in the long run, may increase the risk of P runoff and eutrophication. Substance flow analyses (SFA), used to identify potentials for improved P management, have not considered this well-known quality barrier. We, therefore, argue that traditional SFA over-estimates the fertilizer potential of secondary P resources. Using Norway as a case, we present a plant-availability extended SFA methodology that integrates SFA and the concept of relative agronomic efficiency. To account for the plant-available soil P stock and long-term soil interactions, we adjust the Norwegian P fertilization demand based on soil P values. We found that, while the method has uncertainties particularly for long-term estimations, it more realistically estimates secondary P fertilizer potentials and is adaptable to other countries. For Norway, we found the overall secondary P fertilizer potential reduced by 6-55% when considering plant-availability. The most important secondary resource was manure, which had the highest P plant-availability and quantities large enough (10.9kt plant-available P/yr) to meet Norway's entire P fertilization demand (5.8kt plant-available P/yr). However, barriers related to its transportability need to be overcome to efficiently use this resource. Fish sludge was also an important product, with 6.1kt plant-available P/yr but with uncertain plant-availability data. We argue that high quality secondary P resources can theoretically meet Norway's P fertilization demand and, therefore, make Norway mineral P independent. However, it is important that their use is carefully regulated based on plant-availability to eliminate the soil accumulation of both available and residual P.

12.
Annu Rev Genet ; 50: 211-234, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27648643

RESUMO

Plants do not grow as axenic organisms in nature, but host a diverse community of microorganisms, termed the plant microbiota. There is an increasing awareness that the plant microbiota plays a role in plant growth and can provide protection from invading pathogens. Apart from intense research on crop plants, Arabidopsis is emerging as a valuable model system to investigate the drivers shaping stable bacterial communities on leaves and roots and as a tool to decipher the intricate relationship among the host and its colonizing microorganisms. Gnotobiotic experimental systems help establish causal relationships between plant and microbiota genotypes and phenotypes and test hypotheses on biotic and abiotic perturbations in a systematic way. We highlight major recent findings in plant microbiota research using comparative community profiling and omics analyses, and discuss these approaches in light of community establishment and beneficial traits like nutrient acquisition and plant health.


Assuntos
Microbiota , Plantas/microbiologia , Adaptação Biológica , Arabidopsis/microbiologia , Ecossistema , Consórcios Microbianos , Filogenia , Raízes de Plantas/microbiologia
13.
Mol Cell Proteomics ; 15(10): 3256-3269, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27457762

RESUMO

Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota.


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/análise , Methylobacterium/crescimento & desenvolvimento , Proteômica/métodos , Sphingomonas/crescimento & desenvolvimento , Adaptação Fisiológica , Aminoácidos/metabolismo , Hidrocarbonetos/metabolismo , Espectrometria de Massas , Methylobacterium/metabolismo , Fotossíntese , Folhas de Planta/microbiologia , Especificidade da Espécie , Sphingomonas/metabolismo , Simbiose
14.
Environ Sci Technol ; 50(16): 8453-61, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27400378

RESUMO

Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.


Assuntos
Alumínio/provisão & distribuição , Gálio/provisão & distribuição , Reciclagem , Indústrias , Modelos Teóricos
15.
FEBS J ; 283(3): 510-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26613566

RESUMO

The ion-translocating c ring of the Na(+) F1 Fo ATP synthase of the anaerobic bacterium Acetobacterium woodii is the first heteromeric c ring found in nature that contains one V- (c1 ) and two F-type-like c subunits (c2 /c3 ), the latter of identical amino acid sequence. To address whether they are of equal or different importance for function, they were deleted in combination or individually. Deletion of c1 was compensated by incorporation of two c2 /c3 subunits but the enzyme was unstable and largely impaired in Na(+) transport. Deletion of c2 was compensated by incorporation of c3 but also led to a reduction of Na(+) transport. Deletion of c3 had no effect. In contrast, deletion of both c2 and c3 led to a complete loss of ATPase activity at the cytoplasmic membrane. Mass spectrometric analysis of c2 +1 Ala and c2 +2 Ala variants revealed a copy number of 8 : 1 for c2 /c3 which is consistent with the biochemical characteristics of the variants. These data indicate a role of c1 in assembly and a function of c2 as the predominant c ring constituent.


Assuntos
Acetobacterium/enzimologia , ATPases Translocadoras de Prótons/química , Sequência de Aminoácidos , Deleção de Genes , Espectrometria de Massas , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
16.
Nature ; 528(7582): 364-9, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26633631

RESUMO

Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.


Assuntos
Arabidopsis/microbiologia , Microbiota/fisiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Genoma Bacteriano/genética , Vida Livre de Germes , Microbiota/genética , Análise de Sequência de DNA , Microbiologia do Solo
17.
Environ Sci Technol ; 49(24): 13937-45, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26496178

RESUMO

Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.


Assuntos
Resíduos de Alimentos , Reciclagem/métodos , Agricultura , Biomassa , Fontes Geradoras de Energia , Meio Ambiente , Alimentos/estatística & dados numéricos , Abastecimento de Alimentos , Modelos Teóricos , Noruega , Fósforo/análise , Análise de Sistemas , Gerenciamento de Resíduos/métodos
18.
Environ Sci Technol ; 49(9): 5704-12, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25884251

RESUMO

Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.


Assuntos
Gálio/química , Atividades Humanas , Arsenicais/química , Simulação por Computador , Humanos , Método de Monte Carlo , Probabilidade , Incerteza
19.
Environ Sci Technol ; 48(18): 10776-84, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25111289

RESUMO

Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.


Assuntos
Alumínio , Automóveis , Carbono/análise , Indústrias , Internacionalidade , Aço , Poluentes Atmosféricos/análise , Pegada de Carbono , Gasolina/análise , Efeito Estufa , Modelos Teóricos , Reciclagem
20.
Environ Microbiol ; 16(7): 2329-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24725362

RESUMO

Bacterial colonizers of the aerial parts of plants, or phyllosphere, have been identified on a number of different plants using cultivation-dependent and independent methods. However, the spatial distribution at the micrometer scale of different main phylogenetic lineages is not well documented and mostly based on fluorescence-tagged model strains. In this study, we developed and applied a spatial explicit approach that allowed the use of fluorescence in situ hybridization (FISH) to study bacterial phylloplane communities of environmentally grown Arabidopsis thaliana. We found on average 5.4 × 10(6) bacteria cm(-2) leaf surface and 1.5 × 10(8) bacteria g(-1) fresh weight. Furthermore, we found that the total biomass in the phylloplane was normally distributed. About 31% of the bacteria found in the phylloplane did not hybridize to FISH probes but exhibited infrared autofluorescence indicative for aerobic anoxygenic phototrophs. Four sets of FISH probes targeting Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes were sufficient to identify all other major contributors of the phylloplane community based on general bacterial probing. Spatial aggregation patterns were observed for all probe-targeted populations at distances up to 7 µm, with stronger tendencies to co-aggregate for members of the same phylogenetic group. Our findings contribute to a bottom-up description of leaf surface community composition.


Assuntos
Actinobacteria/fisiologia , Alphaproteobacteria/fisiologia , Arabidopsis/microbiologia , Bacteroidetes/fisiologia , Betaproteobacteria/fisiologia , Actinobacteria/classificação , Alphaproteobacteria/classificação , Carga Bacteriana , Bacteroidetes/classificação , Betaproteobacteria/classificação , Hibridização in Situ Fluorescente , Consórcios Microbianos/fisiologia , Filogenia , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA