Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci (Camb) ; 10(3): 620-630, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38434173

RESUMO

Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.

2.
Environ Sci Technol ; 55(8): 5547-5558, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33788559

RESUMO

Recently, we suggested that hypobromous acid (HOBr) is a sink for the marine volatile organic sulfur compound dimethyl sulfide (DMS). However, HOBr is also known to react with reactive moieties of dissolved organic matter (DOM) such as phenolic compounds to form bromoform (CHBr3) and other brominated compounds. The reaction between HOBr and DMS may thus compete with the reaction between HOBr and DOM. To study this potential competition, kinetic batch and diffusion-reactor experiments with DMS, HOBr, and DOM were performed. Based on the reaction kinetics, we modeled concentrations of DMS, HOBr, and CHBr3 during typical algal bloom fluxes of DMS and HOBr (10-13 to 10-9 M s-1). For an intermediate to high HOBr flux (≥10-11 M s-1) and a DMS flux ≤10-11 M s-1, the model shows that the DMS degradation by HOBr was higher than for photochemical oxidation, biological consumption, and sea-air gas exchange combined. For HOBr fluxes ≤10-11 M s-1 and a DMS flux of 10-11 M s-1, our model shows that CHBr3 decreases by 86% compared to a lower DMS flux of 10-12 M s-1. Therefore, the reaction between HOBr and DMS likely not only presents a sink for DMS but also may lead to suppressed CHBr3 formation.


Assuntos
Bromatos , Trialometanos , Sulfetos
3.
Environ Sci Technol ; 53(22): 13146-13157, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31613095

RESUMO

Marine emissions of dimethyl sulfide (DMS) to the atmosphere play a fundamental role in the global sulfur (S) cycle and have important consequences for the Earth's radiative balance. In the ocean, DMS is mainly produced by marine algae and bacteria via cleavage of the precursor compound dimethylsulfoniopropionate (DMSP). Here, we studied the reaction between DMS and the strong oxidant hypobromous acid (HOBr), which is also produced by marine algae. Further, reactions between DMS oxidation products and HOBr were studied. The second-order rate constants were determined in competition kinetic experiments using sulfite as a competitor. In addition, we developed a new HPLC-ICP-MS/MS method to identify and quantify the oxidation products of DMS and related compounds. We found that HOBr reacts very fast with DMS to dimethyl sulfoxide (DMSO), with a second-order rate constant of 1.6 × 109 M-1 s-1, while the subsequent oxidation of DMSO to dimethyl sulfone (DMSO2) is much slower (0.4 M-1 s-1). Concentrations of DMSP, DMSO2, and methanesulfonic acid (MSA) did not decrease when exposed to excess concentrations of HOBr, implying that these S-containing compounds are not or only slightly reactive toward HOBr. A quantitative comparison of known DMS sinks shows that HOBr may be an important, hitherto neglected sink for marine DMS that needs to be considered in ocean-atmosphere chemistry models.


Assuntos
Compostos de Sulfônio , Espectrometria de Massas em Tandem , Bromatos , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA