Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947124

RESUMO

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/classificação , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Animais , Infecções por Klebsiella/microbiologia , Larva/microbiologia , Plasmídeos/genética , Mariposas/microbiologia , Humanos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lepidópteros/microbiologia , Viscosidade , Fenótipo , Perfilação da Expressão Gênica
2.
Sci Rep ; 13(1): 19025, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923898

RESUMO

Hypervirulent Klebsiella pneumoniae strains (hvKp) can cause invasive community-acquired infections in healthy patients of all ages. In this study, the prevalence of putative hvKp in a German tertiary center was investigated and hvKp were characterized by phenotypic and molecular assays. All K. pneumoniae isolates in routine microbiological diagnostics from a single center were screened by string-testing over a period of 6 months. String-test positive (≥ 0.5 mm) isolates were re-evaluated on different media and under various conditions (aerobe, anaerobe). For string-test positive isolates, genes (magA, iutA, rmpA and rmpA2) associated with hypermucoviscosity and hypervirulence were amplified by multiplex PCR. PCR-positive isolates were subjected to whole-genome sequencing and sedimentation and biofilm formation assays. From 1310 screened K. pneumoniae isolates in clinical routine 100 isolates (7.6%) were string test positive. From these, 9% (n = 9) were defined as putative hvKp (string-test+/PCR+). Highest rate of string-test-positive isolates was observed on MacConkey agar under aerobic conditions. Amongst these nine putative hvKp isolates, the international lineage ST23 carrying hvKp-plasmid pKpVP-1 was the most common, but also a rare ST86 with pKpVP-2 was identified. All nine isolates showed hypermucoviscosity and weak biofilm formation. In conclusion, 9% of string-positive, respectively 0.69% of all K. pneumoniae isolates from routine were defined as putative hypervirulent. MacConkey agar was the best medium for hvKp screening.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Fatores de Virulência/genética , Virulência/genética , Ágar , Reação em Cadeia da Polimerase Multiplex , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Antibacterianos
3.
Microbiol Spectr ; 10(3): e0014822, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435751

RESUMO

The ability of extensively drug-resistant (XDR) Klebsiella pneumoniae to rapidly acquire resistance to novel antibiotics is a global concern. Moreover, Klebsiella clonal lineages that successfully combine resistance and hypervirulence have increasingly occurred during the last years. However, the underlying mechanisms of counteracting fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we investigated whether and how an XDR sequence type (ST)307 K. pneumoniae strain developed resistance against the novel drug combination ceftazidime-avibactam (CAZ-AVI) using experimental evolution. In addition, we performed in vitro and in vivo assays, molecular modeling, and bioinformatics to identify resistance-conferring processes and explore the resulting decrease in fitness and virulence. The subsequent amelioration of the initial costs was also addressed. We demonstrate that distinct mutations of the major nonselective porin OmpK36 caused CAZ-AVI resistance that persists even upon following a second experimental evolution without antibiotic selection pressure and that the Klebsiella strain compensates the resulting fitness and virulence costs. Furthermore, the genomic and transcriptomic analyses suggest the envelope stress response regulator rpoE and associated RpoE-regulated genes as drivers of this compensation. This study verifies the crucial role of OmpK36 in CAZ-AVI resistance and shows the rapid adaptation of a bacterial pathogen to compensate fitness- and virulence-associated resistance costs, which possibly contributes to the emergence of successful clonal lineages. IMPORTANCE Extensively drug-resistant Klebsiella pneumoniae causing major outbreaks and severe infections has become a significant challenge for health care systems worldwide. Rapid resistance development against last-resort therapeutics like ceftazidime-avibactam is a significant driver for the accelerated emergence of such pathogens. Therefore, it is crucial to understand what exactly mediates rapid resistance acquisition and how bacterial pathogens counteract accompanying fitness and virulence costs. By combining bioinformatics with in vitro and in vivo phenotypic approaches, this study revealed the critical role of mutations in a particular porin channel in ceftazidime-avibactam resistance development and a major metabolic regulator for ameliorating fitness and virulence costs. These results highlight underlying mechanisms and contribute to the understanding of factors important for the emergence of successful bacterial pathogens.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceftazidima , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Porinas , Virulência/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA