Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Immunol ; 13: 857455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558073

RESUMO

Inflammasomes are crucial gatekeepers of the immune response, but their maladaptive activation associates with inflammatory pathologies. Besides canonical activation, monocytes can trigger non-transcriptional or rapid inflammasome activation that has not been well defined in the context of acute myocardial infarction (AMI). Rapid transcription-independent inflammasome activation induced by simultaneous TLR priming and triggering stimulus was measured by caspase-1 (CASP1) activity and interleukin release. Both classical and intermediate monocytes from healthy donors exhibited robust CASP1 activation, but only classical monocytes produced high mature interleukin-18 (IL18) release. We also recruited a limited number of coronary artery disease (CAD, n=31) and AMI (n=29) patients to evaluate their inflammasome function and expression profiles. Surprisingly, monocyte subpopulations isolated from blood collected during percutaneous coronary intervention (PCI) from AMI patients presented diminished CASP1 activity and abrogated IL18 release despite increased NLRP3 gene expression. This unexpected attenuated rapid inflammasome activation was accompanied by a significant increase of TNFAIP3 and IRAKM expression. Moreover, TNFAIP3 protein levels of circulating monocytes showed positive correlation with high sensitive troponin T (hsTnT), implying an association between TNFAIP3 upregulation and the severity of tissue injury. We suggest this monocyte attenuation to be a protective phenotype aftermath following a very early inflammatory wave in the ischemic area. Damage-associated molecular patterns (DAMPs) or other signals trigger a transitory negative feedback loop within newly recruited circulating monocytes as a mechanism to reduce post-injury tissue damage.


Assuntos
Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Monócitos , Infarto do Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Diabetes ; 68(2): 349-360, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30257976

RESUMO

Aggravated endothelial injury and impaired endothelial repair capacity contribute to the high cardiovascular risk in patients with type 2 diabetes (T2D), but the underlying mechanisms are still incompletely understood. Here we describe the functional role of a mature form of miRNA (miR) 483-3p, which limits endothelial repair capacity in patients with T2D. Expression of human (hsa)-miR-483-3p was higher in endothelial-supportive M2-type macrophages (M2MΦs) and in the aortic wall of patients with T2D than in control subjects without diabetes. Likewise, the murine (mmu)-miR-483* was higher in T2D than in nondiabetic murine carotid samples. Overexpression of miR-483-3p increased endothelial and macrophage apoptosis and impaired reendothelialization in vitro. The inhibition of hsa-miR-483-3p in human T2D M2MΦs transplanted to athymic nude mice (NMRI-Foxn1ν/Foxn1ν ) or systemic inhibition of mmu-miR-483* in B6.BKS(D)-Leprdb /J diabetic mice rescued diabetes-associated impairment of reendothelialization in the murine carotid-injury model. We identified the endothelial transcription factor vascular endothelial zinc finger 1 (VEZF1) as a direct target of miR-483-3p. VEZF1 expression was reduced in aortae of diabetic mice and upregulated in diabetic murine aortae upon systemic inhibition of mmu-483*. The miRNA miR-483-3p is a critical regulator of endothelial integrity in patients with T2D and may represent a therapeutic target to rescue endothelial regeneration after injury in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Feminino , Humanos , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Immunity ; 38(4): 754-68, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23477738

RESUMO

Endothelial injury and dysfunction (ED) represent a link between cardiovascular risk factors promoting hypertension and atherosclerosis, the leading cause of death in Western populations. High-density lipoprotein (HDL) is considered antiatherogenic and known to prevent ED. Using HDL from children and adults with chronic kidney dysfunction (HDL(CKD)), a population with high cardiovascular risk, we have demonstrated that HDL(CKD) in contrast to HDL(Healthy) promoted endothelial superoxide production, substantially reduced nitric oxide (NO) bioavailability, and subsequently increased arterial blood pressure (ABP). We have identified symmetric dimethylarginine (SDMA) in HDL(CKD) that causes transformation from physiological HDL into an abnormal lipoprotein inducing ED. Furthermore, we report that HDL(CKD) reduced endothelial NO availability via toll-like receptor-2 (TLR-2), leading to impaired endothelial repair, increased proinflammatory activation, and ABP. These data demonstrate how SDMA can modify the HDL particle to mimic a damage-associated molecular pattern that activates TLR-2 via a TLR-1- or TLR-6-coreceptor-independent pathway, linking abnormal HDL to innate immunity, ED, and hypertension.


Assuntos
Aterosclerose/imunologia , Hipertensão/imunologia , Nefropatias/imunologia , Lipoproteínas HDL/metabolismo , Receptor 2 Toll-Like/metabolismo , Adulto , Animais , Arginina/análogos & derivados , Arginina/química , Pressão Arterial , Criança , Endotélio , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Lipoproteínas HDL/química , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Receptor 2 Toll-Like/genética , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA