Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 16530-16544, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875706

RESUMO

The cellular environment, characterized by its intricate composition and spatial organization, hosts a variety of organelles, ranging from membrane-bound ones to membraneless structures that are formed through liquid-liquid phase separation. Cells show precise control over the position of such condensates. We demonstrate that organelle movement in external concentration gradients, diffusiophoresis, is distinct from the one of colloids because fluxes can remain finite inside the liquid-phase droplets and movement of the latter arises from incompressibility. Within cellular domains diffusiophoresis naturally arises from biochemical reactions that are driven by a chemical fuel and produce waste. Simulations and analytical arguments within a minimal model of reaction-driven phase separation reveal that the directed movement stems from two contributions: Fuel and waste are refilled or extracted at the boundary, resulting in concentration gradients, which (i) induce product fluxes via incompressibility and (ii) result in an asymmetric forward reaction in the droplet's surroundings (as well as asymmetric backward reaction inside the droplet), thereby shifting the droplet's position. We show that the former contribution dominates and sets the direction of the movement, toward or away from fuel source and waste sink, depending on the product molecules' affinity toward fuel and waste, respectively. The mechanism thus provides a simple means to organize condensates with different composition. Particle-based simulations and systems with more complex reaction cycles corroborate the robustness and universality of this mechanism.

2.
Biophys J ; 123(16): 2455-2475, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38867448

RESUMO

Exchange of material across two membranes, as in the case of synaptic neurotransmitter release from a vesicle, involves the formation and poration of a hemifusion diaphragm (HD). The nontrivial geometry of the HD leads to environment-dependent control, regarding the stability and dynamics of the pores required for this kind of exocytosis. This work combines particle simulations, field-based calculations, and phenomenological modeling to explore the factors influencing the stability, dynamics, and possible control mechanisms of pores in HDs. We find that pores preferentially form at the HD rim, and that their stability is sensitive to a number of factors, including the three line tensions, membrane tension, HD size, and the ability of lipids to "flip-flop" across leaflets. Along with a detailed analysis of these factors, we discuss ways that vesicles or cells may use them to open and close pores and thereby quickly and efficiently transport material.


Assuntos
Fusão de Membrana , Porosidade , Modelos Biológicos , Membrana Celular/metabolismo
3.
Nat Commun ; 15(1): 2793, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555357

RESUMO

Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Microscopia Crioeletrônica , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo , Proteoma/metabolismo
5.
Langmuir ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319679

RESUMO

Vesicles on substrates play a fundamental role in many biological processes, ranging from neurotransmitter release at the synapse on small scales to the nutrient intake of trees by large vesicles. For these processes, the adsorption or desorption of vesicles to biological substrates is crucial. Consequently, it is important to understand the factors determining whether and for how long a vesicle adsorbs to a substrate and what shape it will adopt. Here, we systematically study the adsorption of a vesicle to planar substrates with short- and long-range interactions, with and without buoyancy. We assume an axially symmetric system throughout our simulations. Previous studies often considered a contact potential of zero range and neutral buoyancy. The interaction range alters the location and order of the adsorption transition and is particularly important for small vesicles, e.g., in the synapse. Whereas even small density differences between the inside and the outside of the vesicle give rise to strong buoyancy effects for large vesicles, e.g., giant unilamellar vesicles, as buoyancy effects scale with the fourth power of the vesicle size. We find that (i) an attractive membrane-substrate potential with nonzero spatial extension leads to a pinned state, where the vesicle benefits from the attractive membrane-substrate interaction without significant deformation. The adsorption transition is of first order and occurs when the substrate switches from repulsive to attractive. (ii) Buoyancy shifts the transversality condition, which relates the maximal curvature in the contact zone to the adhesion strength and bending rigidity, up/downward, depending on the direction of the buoyancy force. The magnitude of the shift is influenced by the range of the potential. For upward buoyancy, adsorbed vesicles are at most metastable. We determine the stability limit and the desorption mechanisms and compile the thermodynamic data into an adsorption diagram. Our findings reveal that buoyancy, as well as spatially extended interactions, are essential when quantitatively comparing experiments to theory.

6.
Nanomaterials (Basel) ; 14(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251099

RESUMO

Nanoparticles have many advantages as active materials, such as a short diffusion length, low charge transfer resistance, or a reduced probability of cracking. However, their low packing density makes them unsuitable for commercial battery applications. Hierarchically structured microparticles are synthesized from nanoscale primary particles by targeted aggregation. Due to their open accessible porosity, they retain the advantages of nanomaterials but can be packed much more densely. However, the intrinsic porosity of the secondary particles leads to limitations in processing properties and increases the overall porosity of the electrode, which must be balanced against the improved rate stability and increased lifetime. This is demonstrated for an established cathode material for lithium-ion batteries (LiNi0.33Co0.33Mn0.33O2, NCM111). For active materials with low electrical or ionic conductivity, especially post-lithium systems, hierarchically structured particles are often the only way to produce competitive electrodes.

7.
Z Literaturwissenschaft Linguist ; 51(3): 421-450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624894

RESUMO

This study examines modal verbs in German press coverage of COVID-19 during the first phase of the pandemic. The data basis is an 18-million-word corpus of newspaper articles. For analysis, a sample is drawn from the total number of modal verbs in the corpus and these are categorised according to their discourse function. The corresponding annotated data are analysed quantitatively and qualitatively. For this purpose, the study draws back to Kratzer's concept of conversational backgrounds. It turns out that in addition to normative speech backgrounds, goal formulations can be found above all. Normative backgrounds are evoked, on the one hand, to address official rules and their effects and, on the other hand in appeals and demands, to refer to social norms that are assumed as common ground. The fact that teleological backgrounds play a relatively large role indicates that the normalisation perspective is of great importance as a regulative in the crisis discourse. More positive than negative determining factors are indicated and uncertainty markings occur comparatively rarely. This points to successful crisis communication in this discourse phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA