RESUMO
SUMMARY: Accurate clustering of mixed data, encompassing binary, categorical, and continuous variables, is vital for effective patient stratification in clinical questionnaire analysis. To address this need, we present longmixr, a comprehensive R package providing a robust framework for clustering mixed longitudinal data using finite mixture modeling techniques. By incorporating consensus clustering, longmixr ensures reliable and stable clustering results. Moreover, the package includes a detailed vignette that facilitates cluster exploration and visualization. AVAILABILITY AND IMPLEMENTATION: The R package is freely available at https://cran.r-project.org/package=longmixr with detailed documentation, including a case vignette, at https://cellmapslab.github.io/longmixr/.
Assuntos
Software , Humanos , Estudos Transversais , Análise por Conglomerados , Inquéritos e QuestionáriosRESUMO
BACKGROUND: Nummular eczema (NE) is a common chronic inflammatory skin disease characterized by multiple, pruritic, discoid-shaped lesions. Since the underlying immune mechanisms are not fully understood, it is unclear whether NE should be regarded as variant of atopic dermatitis (AD) or a distinct disease. OBJECTIVE: We compared the clinical, histopathologic, and molecular signatures of NE with that of type 2 and type 3 skin diseases. METHODS: We performed bulk RNA sequencing as well as histologic and clinical studies in lesional and nonlesional skin biopsy specimens from NE (n = 50), AD (n = 47), and psoriasis (n = 90) patients. RESULTS: NE displayed typical hallmarks of AD, such as an impaired epidermal barrier, microbial colonization, spongiosis, and eosinophil infiltration, but also aspects of psoriasis, including increased epidermal thickness, number of Ki-67+ cells, and neutrophilic infiltration. At the gene expression level, neutrophil-attracting cytokines (IL19, CXCL8, CXCL5) were upregulated, whereas TH2-related cytokines (IL13, CCL17, CCL18, CCL26, CCL27) were similarly expressed in NE compared to AD. Principal component analysis of transcriptome data from lesional skin showed that AD and NE cluster together distinct of psoriasis. In line with this, an established molecular classifier identified NE as AD rather than psoriasis. Finally, we demonstrated clinical and molecular efficacy of dupilumab treatment in NE. CONCLUSION: NE shows overlapping type 2 and type 3 immune signatures, while type 2 immunity predominates and should be the primary target of specific therapeutic interventions. This supports the view of NE as a variant of AD.
Assuntos
Dermatite Atópica , Eczema , Psoríase , Humanos , Eczema/patologia , Pele , Citocinas/metabolismo , ImunidadeRESUMO
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Assuntos
Transtornos Mentais , Neocórtex , Humanos , Transtornos Mentais/genética , Envelhecimento/genética , Neurônios , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
Assuntos
Transtorno Depressivo Maior , Receptores de Glucocorticoides , Adolescente , Criança , Transtorno Depressivo Maior/genética , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glucocorticoides , Humanos , Masculino , Locos de Características Quantitativas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Caracteres Sexuais , TranscriptomaRESUMO
Constantly decreasing costs of high-throughput profiling on many molecular levels generate vast amounts of multi-omics data. Studying one biomedical question on two or more omic levels provides deeper insights into underlying molecular processes or disease pathophysiology. For the majority of multi-omics data projects, the data analysis is performed level-wise, followed by a combined interpretation of results. Hence the full potential of integrated data analysis is not leveraged yet, presumably due to the complexity of the data and the lacking toolsets. We propose a versatile approach, to perform a multi-level fully integrated analysis: The Knowledge guIded Multi-Omics Network inference approach, KiMONo ( https://github.com/cellmapslab/kimono ). KiMONo performs network inference by using statistical models for combining omics measurements coupled to a powerful knowledge-guided strategy exploiting prior information from existing biological sources. Within the resulting multimodal network, nodes represent features of all input types e.g. variants and genes while edges refer to knowledge-supported and statistically derived associations. In a comprehensive evaluation, we show that our method is robust to noise and exemplify the general applicability to the full spectrum of multi-omics data, demonstrating that KiMONo is a powerful approach towards leveraging the full potential of data sets for detecting biomarker candidates.
RESUMO
Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] ≤ 0.1 and absolute fold change [FC] expression ≥ 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn's cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.
Assuntos
Glucocorticoides/efeitos adversos , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estudos de Coortes , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Estresse Fisiológico/efeitos dos fármacosRESUMO
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.
Assuntos
Metilação de DNA/genética , DNA/sangue , Interação Gene-Ambiente , Estudos de Coortes , Epigênese Genética , Feminino , Sangue Fetal , Genótipo , Humanos , Recém-Nascido , Masculino , Gravidez , Fatores de RiscoRESUMO
Most lung cancer deaths are related to metastases, which indicates the necessity of detecting and inhibiting tumor cell dissemination. Here, we aimed to identify miRNAs involved in metastasis of lung adenocarcinoma as prognostic biomarkers and therapeutic targets. To that end, lymph node metastasis-associated miRNAs were identified in The Cancer Genome Atlas lung adenocarcinoma patient cohort (sequencing data; n = 449) and subsequently validated by qRT-PCR in an independent clinical cohort (n = 108). Overexpression of miRNAs located on chromosome 14q32 was associated with metastasis in lung adenocarcinoma patients. Importantly, Kaplan-Meier analysis and log-rank test revealed that higher expression levels of individual 14q32 miRNAs (mir-539, mir-323b, and mir-487a) associated with worse disease-free survival of never-smoker patients. Epigenetic analysis including DNA methylation microarray data and bisulfite sequencing validation demonstrated that the induction of 14q32 cluster correlated with genomic hypomethylation of the 14q32 locus. CRISPR activation technology, applied for the first time to functionally study the increase of clustered miRNA levels in a coordinated manner, showed that simultaneous overexpression of 14q32 miRNAs promoted tumor cell migratory and invasive properties. Analysis of individual miRNAs by mimic transfection further illustrated that miR-323b-3p, miR-487a-3p, and miR-539-5p significantly contributed to the invasive phenotype through the indirect regulation of different target genes. In conclusion, overexpression of 14q32 miRNAs, associated with the respective genomic hypomethylation, promotes metastasis and correlates with poor patient prognosis in lung adenocarcinoma.Implications: This study points to chromosome 14q32 miRNAs as promising targets to inhibit tumor cell dissemination and to predict patient prognosis in lung adenocarcinoma. Mol Cancer Res; 16(3); 390-402. ©2018 AACR.
Assuntos
Adenocarcinoma de Pulmão/genética , Cromossomos Humanos Par 14 , MicroRNAs/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Estudos de Coortes , Epigênese Genética , Feminino , Humanos , Masculino , Metástase Neoplásica , PrognósticoRESUMO
To elucidate the molecular basis of BMP4-induced differentiation of human pluripotent stem cells (PSCs) toward progeny with trophectoderm characteristics, we produced transcriptome, epigenome H3K4me3, H3K27me3, and CpG methylation maps of trophoblast progenitors, purified using the surface marker APA. We combined them with the temporally resolved transcriptome of the preprogenitor phase and of single APA+ cells. This revealed a circuit of bivalent TFAP2A, TFAP2C, GATA2, and GATA3 transcription factors, coined collectively the "trophectoderm four" (TEtra), which are also present in human trophectoderm in vivo. At the onset of differentiation, the TEtra factors occupy multiple sites in epigenetically inactive placental genes and in OCT4 Functional manipulation of GATA3 and TFAP2A indicated that they directly couple trophoblast-specific gene induction with suppression of pluripotency. In accordance, knocking down GATA3 in primate embryos resulted in a failure to form trophectoderm. The discovery of the TEtra circuit indicates how trophectoderm commitment is regulated in human embryogenesis.
Assuntos
Diferenciação Celular/fisiologia , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA3/metabolismo , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Macaca mulatta , Gravidez , Transcriptoma/fisiologia , Trofoblastos/metabolismoRESUMO
Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RTâTMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RTâTMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo.