Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 355: 122-134, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724849

RESUMO

Oral drug delivery increases patient compliance and is thus the preferred administration route for most drugs. However, for biologics the intestinal barrier greatly limits the absorption and reduces their bioavailability. One strategy employed to improve on this is chemical modification of the biologic through the addition of lipid side chains. While it has been established that lipidation of peptides can increase transport, a mechanistic understanding of this effect remains largely unexplored. To pursue this mechanistic understanding, end-point detection of biopharmaceuticals transported through a monolayer of fully polarized epithelial cells is typically used. However, these methods are time-consuming and tedious. Furthermore, most established methods cannot be combined easily with high-resolution live-cell fluorescence imaging that could provide a mechanistic insight into cellular uptake and transport. Here we address this challenge by developing an axial PSF deconvolution scheme to quantify the transport of peptides through a monolayer of Caco-2 cells using single-cell analysis with live-cell confocal fluorescence microscopy. We then measure the known cross-barrier transport of several compounds in our model and compare the results with results obtained in an established microfluidic model finding similar transport phenotypes. This verifies that already after two days the Caco-2 cells in our model form a tight monolayer and constitute a functional barrier model. We then apply this assay to investigate the effects of side chain lipidation of the model peptide drug salmon calcitonin (sCT) modified with 4­carbon and 8­carbon-long fatty acid chains. Furthermore, we compare that with experiments performed at lower temperature and using inhibitors for some endocytotic pathways to pinpoint how lipidation length modifies the main avenues for the transport. We thus show that increasing the length of the lipid chain increases the transport of the drug significantly but also makes endocytosis the primary transport mechanism in a short-term cell culture model.


Assuntos
Células Epiteliais , Peptídeos , Humanos , Células CACO-2 , Transporte Biológico , Células Epiteliais/metabolismo , Peptídeos/farmacologia , Ácidos Graxos/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo
2.
RSC Chem Biol ; 2(4): 1115-1143, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458827

RESUMO

Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA