Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Dis ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679598

RESUMO

Aucuba japonica var. variegata Dombrain is a common evergreen cultivated ornamental in China (Li et al. 2016). In December 2022, severe leaf blight on A. japonica was observed next to the Meishiyuan of Zhejiang Normal University (29°8'4″N, 119°37'54″E) in Jinhua City, Zhejiang Province, China. There were seven plants in the surveyed area, and over 50% of leaves were affected. The early symptoms were small gray spot parts with brown borders on the tip of the leaves. Then the grey parts gradually expanded and became brownish black. In severe cases, the whole leaves became black and blighted. To identify the pathogen, 5 symptomatic leaves were randomly collected from 5 plants and cut into small pieces (5 mm × 5 mm), surface disinfected in 1% sodium hypochlorite solution for 3 min, followed by 75% alcohol for 30 s, then rinsed in sterile distilled water thrice. Tissues were cultured on potato dextrose agar (PDA) and incubated at 28°C for 7 days. Pure cultures were obtained by the single-spore method. Thirteen strains were isolates from the tissues, and nine of them showed similar morphological characteristics. Colonies were white initially, then became gray. The undersides of the colonies became black gradually. Hyaline, fusiform conidia (n = 30) were 17.1 to 24.76 µm (average 20.39 ± 1.906 µm) in length and 5.4 to 6.61 µm (average 6.19 ± 0.434 µm) in width. The DNA of nine isolates were extracted by Ezup Column Bacteria Genomic DNA Purification Kit, and their sequences were identical, so they were named QM1. The internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF1), and ß-tubulin (TUB2) genes were amplified with primer pairs ITS1/ITS4, TEF1-728F/TEF1-986R and ßt2a/ßt2b (Slippers et al. 2004), respectively. The BLAST analysis indicated that ITS (OR215464), TEF1 (OR243689), and TUB2 (OR243688) of the isolate QM1 were 99 to 100% identical to those of Botryosphaeria dothidea (GenBank accession nos. MH329646 for ITS sequences; OL891702 for TEF1 sequences; MK511445 for TUB2 sequences). In addition, the phylogenetic tree based on sequences from ITS, TEF1 and TUB2 was constructed with MEGA 11 by use of the maximum likelihood method with 1,000 bootstrapping iterations. Based on the multi-locus phylogeny and morphological features, the isolate QM1 was identified as B. dothidea. To test the Koch's postulates, ten leaves from three healthy two- to three-year-old A. japonica plants were surface disinfested with 75% ethanol for 30 s, rinsed with ddH2O three times. The leaves were wounded with a sterile needle and inoculated with 2ml drop of the isolate QM1 conidial suspension (106 spores/mL), with sterile distilled water as a control. All plants were placed in a greenhouse at 28°C, >70% relative humidity and 12 h light/day. The experiment was repeated three times. After 7 days, leaves of the inoculated group showed symptoms similar to those observed on the naturally infected leaves, while leaves of the control group remained asymptomatic. The pathogen was reisolated from inoculated leaves and was confirmed as B. dothidea based on morphological and molecular analyses. It has been reported B. dothidea cause leaf disease in a wide range of hosts in China, such as Camellia oleifera (Hao et al. 2023), Kadsura coccinea (Su et al. 2021). To our knowledge, this is the first report of Botryosphaeria dothidea causing leaf blight on Aucuba japonica in Zhejiang Province of China. B. dothidea are usually secondary invaders and are known to cause diseases in stressed plants. The results further expand the host-range of B. dothidea, and would help to establish control strategy against the disease.

2.
Front Plant Sci ; 15: 1365989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633460

RESUMO

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a widespread and destructive disease in rice production. Previously, we cloned an executor R gene, Xa7, which confers durable and broad-spectrum resistance to BB. Here, we further confirmed that the transcription activator-like effector (TALE) AvrXa7 in Xoo strains could directly bind to the effector-binding element (EBE) in the promoter of the Xa7 gene. Other executor R genes (Xa7, Xa10, Xa23, and Xa27) driven by the promoter of the Xa7 gene could be activated by AvrXa7 and trigger the hypersensitive response (HR) in tobacco leaves. When the expression of the Xa23 gene was driven by the Xa7 promoter, the transgenic rice plants displayed a similar resistance spectrum as the Xa7 gene, demonstrating that the disease resistance characteristics of executor R genes are mainly determined by their induction patterns. Xa7 gene is induced locally by Xoo in the infected leaves, and its induction not only inhibited the growth of incompatible strains but also enhanced the resistance of rice plants to compatible strains, which overcame the shortcomings of its race-specific resistance. Transcriptome analysis of the Xa7 gene constitutive expression in rice plants displayed that Xa7-mediated disease resistance was related to the biosynthesis of lignin and thus enhanced resistance to Xoo. Overall, our results provided novel insights and important resources for further clarifying the molecular mechanisms of the executor R genes.

3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1237-1250, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658160

RESUMO

The CRISPR/Cas9 gene editing technology has proven to be valuable in crop breeding applications. Understanding and mastering this technology will provide a strong foundation for students majoring in biology, agronomy, and related fields to engage in scientific research and work. To incorporate CRISPR/Cas9 technology into experimental teaching courses at colleges, an innovative teaching experiment entitled "Enhancing the resistance of rice plants to bacterial blight disease using CRISPR/Cas9 technology" was designed. The experiment allows students to deepen their understanding of the basic principles of CRISPR/Cas technology, acquire proficiency in its protocol, and learn to apply the technology for targeted molecular breeding of rice. It not only expands students' knowledge and skills, but also promotes the reform and innovation of experimental teaching methods.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Oryza , Melhoramento Vegetal , Oryza/genética , Edição de Genes/métodos , Ensino , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética
4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339152

RESUMO

Calcium (Ca2+) is a versatile intracellular second messenger that regulates several signaling pathways involved in growth, development, stress tolerance, and immune response in plants. Autoinhibited Ca2+-ATPases (ACAs) play an important role in the regulation of cellular Ca2+ homeostasis. Here, we systematically analyzed the putative OsACA family members in rice, and according to the phylogenetic tree of OsACAs, OsACA9 was clustered into a separated branch in which its homologous gene in Arabidopsis thaliana was reported to be involved in defense response. When the OsACA9 gene was knocked out by CRISPR/Cas9, significant accumulation of reactive oxygen species (ROS) was detected in the mutant lines. Meanwhile, the OsACA9 knock out lines showed enhanced disease resistance to both rice bacterial blight (BB) and bacterial leaf streak (BLS). In addition, compared to the wild-type (WT), the mutant lines displayed an early leaf senescence phenotype, and the agronomy traits of their plant height, panicle length, and grain yield were significantly decreased. Transcriptome analysis by RNA-Seq showed that the differentially expressed genes (DEGs) between WT and the Osaca9 mutant were mainly enriched in basal immune pathways and antibacterial metabolite synthesis pathways. Among them, multiple genes related to rice disease resistance, receptor-like cytoplasmic kinases (RLCKs) and cell wall-associated kinases (WAKs) genes were upregulated. Our results suggest that the Ca2+-ATPase OsACA9 may trigger oxidative burst in response to various pathogens and synergically regulate disease resistance and leaf senescence in rice.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Adenosina Trifosfatases/metabolismo , Oryza/metabolismo , Senescência Vegetal , Filogenia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
5.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 104-121, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258635

RESUMO

YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Bioensaio , Temperatura Baixa , Biologia Computacional
6.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 724-740, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36847101

RESUMO

SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Fragaria/metabolismo , Genes de Plantas , Estresse Fisiológico/genética , Arabidopsis/genética , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2700-2712, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002404

RESUMO

GLKs (GOLDEN 2-LIKEs) are a group of plant-specific transcription factors regulating the chloroplast biogenesis, differentiation and function maintains by triggering the expression of the photosynthesis-associated nuclear genes (PhANGs). The GLKs also play important roles in nutrient's accumulation in fruits, leaf senescence, immunity and abiotic stress response. The expression of GLK genes were affected by multiple hormones or environmental factors. Therefore, GLKs were considered as the key nodes of regulatory network in plant cells, and potential candidates to improve the photosynthetic capacity of crops. Since numerous researches of GLKs have been reported in plants, the biological function, molecular mechanism of GLKs genes and its applications in breeding were summarized and a GLK-mediated signaling network model was developed. This review may facilitate future research and application of GLKs.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fatores de Transcrição/metabolismo
8.
J Agric Food Chem ; 70(20): 6156-6167, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575308

RESUMO

High yield and superior quality are the main goals pursued by breeders for crop improvement. However, both of them are complex agronomic traits controlled by multiple genes, so the simultaneous improvement of these traits via sexual recombination is time-consuming and direction-uncontrolled. In this study, to solve this dilemma, we introduced the comparative genomic analysis based multiplex genome editing system (CG-MGE), a method for rapid and directional improvement of multiple traits. Application of this method, association analysis between genotypes and phenotypes was carried out to mine excellent alleles; subsequently, the rare excellent alleles of Gn1a, GW2, TGW3, and Chalk5 were simultaneously created by multiplex genome editing and successfully improved the plant architecture, grain yield, and quality of a widely cultivated elite rice variety. Overall, this study provides a method for rapid and directional improvement of crops, and the application of the CG-MGE will be helpful to accelerate rational design breeding.


Assuntos
Edição de Genes , Oryza , Grão Comestível , Edição de Genes/métodos , Genoma de Planta , Genômica , Oryza/genética , Melhoramento Vegetal/métodos
9.
Plant Commun ; 2(3): 100143, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027390

RESUMO

Bacterial blight (BB) is a globally devastating rice disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The use of disease resistance (R) genes in rice breeding is an effective and economical strategy for the control of this disease. Nevertheless, a majority of R genes lack durable resistance for long-term use under global warming conditions. Here, we report the isolation of a novel executor R gene, Xa7, that confers extremely durable, broad-spectrum, and heat-tolerant resistance to Xoo. The expression of Xa7 was induced by incompatible Xoo strains that secreted the transcription activator-like effector (TALE) AvrXa7 or PthXo3, which recognized effector binding elements (EBEs) in the Xa7 promoter. Furthermore, Xa7 induction was faster and stronger under high temperatures. Overexpression of Xa7 or co-transformation of Xa7 with avrXa7 triggered a hypersensitive response in plants. Constitutive expression of Xa7 activated a defense response in the absence of Xoo but inhibited the growth of transgenic rice plants. In addition, analysis of over 3000 rice varieties showed that the Xa7 locus was found primarily in the indica and aus subgroups. A variation consisting of an 11-bp insertion and a base substitution (G to T) was found in EBEAvrXa7 in the tested varieties, resulting in a loss of Xa7 BB resistance. Through a decade of effort, we have identified an important BB resistance gene and characterized its distinctive interaction with Xoo strains; these findings will greatly facilitate research on the molecular mechanism of Xa7-mediated resistance and promote the use of this valuable gene in breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes vpr , Oryza/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Sequência de Aminoácidos , Resistência à Doença/genética , Oryza/metabolismo , Oryza/microbiologia , Melhoramento Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Xanthomonas/genética
10.
Plant Physiol ; 183(4): 1517-1530, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554471

RESUMO

During meiosis, Sad1/UNC-84 (SUN) domain proteins play conserved roles in promoting telomere bouquet formation and homologous pairing across species. Arabidopsis (Arabidopsis thaliana) AtSUN1 and AtSUN2 have been shown to have overlapping functions in meiosis. However, the role of SUN proteins in rice (Oryza sativa) meiosis and the extent of functional redundancy between them remain elusive. Here, we generated single and double mutants of OsSUN1 and OsSUN2 in rice using genome editing. The Ossun1 Ossun2 double mutant showed severe defects in telomere clustering, homologous pairing, and crossover formation, suggesting that OsSUN1 and OsSUN2 are essential for rice meiosis. When introducing a mutant allele of O. sativa SPORULATION11-1 (OsSPO11-1), which encodes a topoisomerase initiating homologous recombination, into the Ossun1 Ossun2 mutant, we observed a combined Osspo11-1- and Ossun1 Ossun2-like phenotype, demonstrating that OsSUN1 and OsSUN2 promote bouquet formation independent of OsSPO11-1 but regulate pairing and crossover formation downstream of OsSPO11-1. Importantly, the Ossun1 single mutant had a normal phenotype, but meiosis was disrupted in the Ossun2 mutant, indicating that OsSUN1 and OsSUN2 are not completely redundant in rice. Further analyses revealed a genetic dosage-dependent effect and an evolutionary differentiation between OsSUN1 and OsSUN2 These results suggested that OsSUN2 plays a more critical role than OsSUN1 in rice meiosis. Taken together, this work reveals the essential but partially redundant roles of OsSUN1 and OsSUN2 in rice meiosis and demonstrates that functional divergence of SUN proteins has taken place during evolution.


Assuntos
Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meiose/genética , Meiose/fisiologia , Oryza/genética , Proteínas de Plantas/genética
11.
Phytopathology ; 109(7): 1171-1183, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30730787

RESUMO

The global regulator Crp-like protein (Clp) is positively involved in the production of virulence factors in some of the Xanthomonas spp. However, the functional importance of Clp in X. axonopodis pv. glycines has not been investigated previously. Here, we showed that deletion of clp led to significant reduction in the virulence of X. axonopodis pv. glycines in soybean, which was highly correlated with the drastic reductions in carbohydrates utilization, extracellular polysaccharide (EPS) production, biofilm formation, cell motility, and synthesis of cell wall degrading enzymes (CWDEs). These significantly impaired properties in the clp mutant were completely rescued by a single-copy integration of the wild-type clp into the mutant chromosome via homologous recombination. Interestingly, overexpression of clp in the wild-type strain resulted in significant increases in cell motility and synthesis of the CWDEs. To our surprise, significant reductions in carbohydrates utilization, EPS production, biofilm formation, and the protease activity were observed in the wild-type strain overexpressing clp, suggesting that Clp also plays a negative role in these properties. Furthermore, quantitative reverse transcription polymerase chain reaction analysis suggested that clp was positively regulated by the diffusible signal factor-mediated quorum-sensing system and the HrpG/HrpX cascade. Taken together, our results reveal that Clp functions as both activator and repressor in multiple biological processes in X. axonopodis pv. glycines that are essential for its full virulence.


Assuntos
Xanthomonas axonopodis , Xanthomonas , Glicina , Doenças das Plantas/microbiologia , Virulência , Xanthomonas axonopodis/patogenicidade
12.
Plant Cell ; 30(12): 3024-3037, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538156

RESUMO

Response regulators play significant roles in controlling various biological processes; however, their roles in plant meiosis remain unclear. Here, we report the identification of OsRR24/LEPTOTENE1 (LEPTO1), a rice (Oryza sativa) type-B response regulator that participates in the establishment of key molecular and morphological features of chromosomes in leptotene, an early stage of prophase I in meiosis. Although meiosis initiates normally, as indicated by staining of the centromere-specific histone CENH3, the meiotic chromosomes in lepto1 mutant pollen mother cells fail to form the thin thread-like structures that are typical of leptotene chromosomes in wild-type pollen mother cells. Furthermore, lepto1 mutants fail to form chromosomal double-strand breaks, do not recruit meiosis-specific proteins to the meiotic chromosomes, and show disrupted callose deposition. LEPTO1 also is essential for programmed cell death in tapetal cells. LEPTO1 contains a conserved signal receiver domain (DDK) and a myb-like DNA binding domain at the N terminus. LEPTO1 interacts with two authentic histidine phosphotransfer (AHP) proteins, OsAHP1 and OsAHP2, via the DDK domain, and a phosphomimetic mutation of the DDK domain relieves its repression of LEPTO1 transactivation activity. Collectively, our results show that OsRR24/LEPTO1 plays a significant role in the leptotene phase of meiotic prophase I.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Meiose/genética , Proteínas Nucleares/metabolismo , Oryza/genética , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , Meiose/fisiologia , Prófase Meiótica I/genética , Prófase Meiótica I/fisiologia , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo
13.
Front Plant Sci ; 9: 1236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210516

RESUMO

The repair of SPO11-dependent double-strand breaks (DSBs) by homologous recombination (HR) ensures the correct segregation of homologous chromosomes. In yeast and human, RAD17 is involved in DNA damage checkpoint control and DSB repair. However, little is known about its function in plants. In this study, we characterized the RAD17 homolog in rice. In Osrad17 pollen mother cells (PMCs), associations between non-homologous chromosomes and chromosome fragmentation were constantly observed. These aberrant chromosome associations were dependent on the formation of programmed DSBs. OsRAD17 interacts with OsRAD1 and the meiotic phenotype of Osrad1 Osrad17 is indistinguishable from the two single mutants which have similar phenotypes, manifesting they could act in the same pathway. OsZIP4, OsMSH5 and OsMER3 are members of ZMM proteins in rice that are required for crossover formation. We found that homologous pairing and synapsis, which was roughly unaffected in Oszip4 and Osrad17 single mutant, was severely disturbed in the Oszip4 Osrad17 double mutant. Similar phenotypes were observed in the Osmsh5 Osrad17 and Osmer3 Osrad1 double mutants, suggesting the cooperation between the checkpoint proteins and ZMM proteins in assuring accurate HR in rice.

14.
Curr Issues Mol Biol ; 27: 171-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28885181

RESUMO

DNA-binding proteins, including transcription factors, epigenetic and chromatin modifiers, control gene expressions in plants. To pinpoint the binding sits of DNA-binding proteins in genome is crucial for decoding gene regulatory networks. Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-Seq) is a widely used approach to identify the DNA regions bound by a specific protein in vivo. The information generated from ChIP-Seq has tremendously advanced our understanding on the mechanism of transcription factors, cofactors and histone modifications in regulating gene expression. In this review, we reviewed the recent research advance of ChIP-Seq in plants, including description of the ChIP-Seq workflow and its various applications in plants, and in addition, provided perspective of the potential advances of ChIP-Seq.


Assuntos
Arabidopsis/genética , Imunoprecipitação da Cromatina/métodos , DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Arabidopsis/metabolismo , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Histonas/genética , Histonas/metabolismo , Motivos de Nucleotídeos , Oryza/metabolismo , Plântula/genética , Plântula/metabolismo
15.
J Agric Food Chem ; 65(6): 1093-1101, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28112511

RESUMO

It has been documented that planthopper attacks change iron (Fe) content of rice plants. To investigate whether planthopper attacks change rice Fe homeostasis at the molecular level, the response of rice Fe homeostasis to early feeding by small brown planthopper (SBPH) was examined by transcriptome profiling. Results showed that the concentration of Fe and nicotianamine decreased in resistant rice genotype and increased in susceptible rice genotype after attack by SBPH. Transcriptome profiling showed that 13 and 21 Fe homeostasis-related genes encoded enzymes that were involved in phytosiderophore biosynthesis and that Fe transporters and regulators displayed altered expression in resistant and susceptible rice genotypes, respectively, after attack by SBPH. This revealing response of Fe homeostasis to planthopper attack in rice at the molecular level provided new insight into rice plants' response to planthopper attack and uncovered a novel physiological response of rice to planthopper attack, which extended our knowledge of the early interaction between rice and SBPH.


Assuntos
Regulação da Expressão Gênica de Plantas , Hemípteros , Ferro/metabolismo , Oryza/fisiologia , Animais , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Oryza/genética , Amido/metabolismo
16.
Curr Issues Mol Biol ; 19: 7-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26364119

RESUMO

Biotic stresses are constraints to plant growth and development negatively impacting crop production. To counter such stresses, plants have developed stress-specific adaptations as well as simultaneous responses. The efficacy and magnitude of inducible adaptive responses are dependent on activation of signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification of proteins associated with defense mechanisms. Proteomics plays an important role in elucidating plant defense mechanisms by mining the differential regulation of proteins to various biotic stresses. Rice, one of the most widely cultivated food crops in world, is constantly challenged by a variety of biotic stresses, and high-throughput proteomics approaches have been employed to unravel the molecular mechanism of the biotic stresses-response in rice. In this review, we summarize the latest advances of proteomic studies on defense responses and discuss the potential relevance of the proteins identified by proteomic means in rice defense mechanism. Furthermore, we provide perspective for proteomics in unraveling the molecular mechanism of rice immunity.


Assuntos
Resistência à Doença , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Adaptação Biológica , Produtos Agrícolas , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade/genética , Oryza/genética , Oryza/microbiologia , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteômica/métodos , Transdução de Sinais , Estresse Fisiológico
17.
Int J Mol Sci ; 16(12): 28746-64, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633389

RESUMO

The small brown planthopper (SBPH) is one of the destructive pests of rice. Although different biochemical pathways that are involved in rice responding to planthopper infestation have been documented, it is unclear which individual metabolic pathways are responsive to planthopper infestation. In this study, an omics-based comparative transcriptional profiling of two contrasting rice genotypes, an SBPH-resistant and an SBPH-susceptible rice line, was assessed for rice individual metabolic pathways responsive to SBPH infestation. When exposed to SBPH, 166 metabolic pathways were differentially regulated; of these, more than one-third of metabolic pathways displayed similar change patterns between these two contrasting rice genotypes; the difference of change pattern between these two contrasting rice genotypes mostly lies in biosynthetic pathways and the obvious difference of change pattern lies in energy metabolism pathways. Combining the Pathway Tools Omics Viewer with the web tool Venn, 21 and 6 metabolic pathways which potentially associated with SBPH resistance and susceptibility, respectively were identified. This study presents an omics-based comparative transcriptional profiling of SBPH-resistant and SBPH-susceptible rice plants during early infestation by SBPH, which will be very informative in studying rice-insect interaction. The results will provide insight into how rice plants respond to early infestation by SBPH from the biochemical pathways perspective.


Assuntos
Ectoparasitoses/genética , Perfilação da Expressão Gênica , Hemípteros , Interações Hospedeiro-Parasita , Oryza/genética , Doenças das Plantas/genética , Transcriptoma , Aminoácidos/metabolismo , Animais , Biologia Computacional/métodos , Resistência à Doença/genética , Suscetibilidade a Doenças , Interações Hospedeiro-Parasita/genética , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Oryza/metabolismo , Doenças das Plantas/parasitologia
18.
Rice (N Y) ; 8: 18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029330

RESUMO

BACKGROUND: Rice mutant, spl5 (spotted leaf 5), has spontaneous hypersensitive-like lesions on its leaves and shows enhanced resistance to pathogens, indicating that SPL5 plays a role in programmed cell death (PCD) and disease resistance. To understand the molecular mechanism of SPL5 gene, we investigated the transcriptome profiles of the spl5 mutant leaves with few lesions (FL) and leaves with many lesions (ML) compared to the wild-type (WT) leaves respectively by microarray. RESULTS: The data from microarray revealed that 243 and 896 candidate genes (Fold change ≥ 3.0) were up- or down-regulated in the spl5-FL and spl5-ML, respectively, and a large number of these genes involved in biotic defense responses or reactive oxygen species (ROS) metabolism. Interestingly, according to our microarray and real-time PCR assays, the expressions of a transcription factor OsWRKY14 and genes responsible for the biosynthesis of serotonin, anthranilate synthase (AS), indole-3-glycerolphosphate synthase (IGPS), tryptophan synthase (TS) and tryptophan decarboxylase (TDC) were significantly up-regulated in the spl5 mutant. It has been reported previously that TS and TDC expressions are regulated by OsWRKY14 in rice, which raises the possibility that OsWRKY14 regulates serotonin production through the up-regulation of TS and TDC. Our HPLC analysis further confirmed that serotonin levels were higher in the leaves of spl5 mutant than that in WT. CONCLUSIONS: Since the serotonin plays a critical role in inducing disease-resistance, the increased serotonin level may contribute, at least partly, to the disease resistance in spl5. The SPL5 gene may act as a negative regulatory factor activating the serotonin metabolic pathway, and these results might provide a new insight into the spl5-induced defense response mechanisms in plants.

19.
Mol Genet Genomics ; 289(3): 373-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504629

RESUMO

Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.


Assuntos
Resistência à Doença/genética , Oryza/genética , Locos de Características Quantitativas , Animais , Evolução Biológica , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Hemípteros , Hibridização Genética , Fenótipo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas
20.
Rice (N Y) ; 6(1): 1, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24280096

RESUMO

BACKGROUND: A lesion-mimic mutant in rice (Oryza sativa L.), spotted leaf 5 (spl5), displays a disease-resistance-enhanced phenotype, indicating that SPL5 negatively regulates cell death and resistance responses. To understand the molecular mechanisms of SPL5 mutation-induced cell death and resistance responses, a proteomics-based approach was used to identify differentially accumulated proteins between the spl5 mutant and wild type (WT). RESULTS: Proteomic data from two-dimensional gel electrophoresis showed that 14 candidate proteins were significantly up- or down-regulated in the spl5 mutant compared with WT. These proteins are involved in diverse biological processes including pre-mRNA splicing, amino acid metabolism, photosynthesis, glycolysis, reactive oxygen species (ROS) metabolism, and defense responses. Two candidate proteins with a significant up-regulation in spl5 - APX7, a key ROS metabolism enzyme and Chia2a, a pathogenesis-related protein - were further analyzed by qPCR and enzyme activity assays. Consistent with the proteomic results, both transcript levels and enzyme activities of APX7 and Chia2a were significantly induced during the course of lesion formation in spl5 leaves. CONCLUSIONS: Many functional proteins involving various metabolisms were likely to be responsible for the lesion formation of spl5 mutant. Generally, in spl5, the up-regulated proteins involve in defense response or PCD, and the down-regulated ones involve in amino acid metabolism and photosynthesis. These results may help to gain new insight into the molecular mechanism underlying spl5-induced cell death and disease resistance in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA