Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Neurosci ; 18: 1373136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638694

RESUMO

Introduction: Many studies have shown that the functional adaptation of immigrants to high-altitude is closely related to oxygen transport, inflammatory response and autonomic nervous system. However, it remains unclear how human attention changes in response to hypoxia-induced neurophysiological activity during high-altitude exposure. Methods: In the present study, we analyzed the relationship between hypoxic-induced neurophysiological responses and attention networks in 116 immigrants (3,680 m) using an attention network test to simultaneously record electroencephalogram and electrocardiogram in combination with specific routine blood markers. Results: Our analysis revealed that red blood cells exert an indirect influence on the three attention networks, mediated through inflammatory processes and heart rate variability. Discussion: The present study provides experimental evidence for the role of a neuroimmune pathway in determining human attention performance at high- altitude. Our findings have implications for understanding the complex interactions between physiological and neurocognitive processes in immigrants adapting to hypoxic environments.

2.
Neuropsychologia ; 191: 108736, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995903

RESUMO

Previous research has established a strong link between attention and visual mental imagery, but it's remained uncertain whether attention networks influence individual differences in the vividness of visual mental imagery. In our study, we examined 140 participants, assessing the vividness of imagery using the Vividness of Visual Imagery Questionnaire in both eyes-open and eyes-closed conditions. We employed the Attention Network Test, coupled with EEG recording, to characterize three attention sub-networks: alerting, orienting, and executive control. To pinpoint the specific attentional networks associated with the vividness of visual mental imagery, we utilized latent profile analysis to categorize participants into distinct subgroups. Additionally, we constructed a regression mixture model to explore how attention networks predict different latent categories of visual imagery vividness. Our findings revealed that the efficiency of the alerting network, as indicated by the N1 component, demonstrated a positive correlation with the vividness of visual imagery. This electrophysiological evidence underscores the role of the alerting network in shaping individual differences in the vividness of visual mental imagery.


Assuntos
Imaginação , Individualidade , Humanos , Imaginação/fisiologia , Imagens, Psicoterapia , Função Executiva , Eletroencefalografia
3.
Neuroscience ; 522: 69-80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164304

RESUMO

The psychological effects of long-term exposure to high-altitude environments have attracted great attention. These effects are usually attributed to the diminished cognitive resources due to high-altitude exposure. This study employed electroencephalography (EEG) to investigate the effects of exposure duration on awareness detection tasks. Neither reaction time nor accuracy showed the direct effects of the exposure duration, so did the model indexes obtained from drift diffusion model analysis. However, event-related potentials (ERP) analysis revealed that exposure duration was associated with changes in the visual awareness negativity (VAN) and the late positivity (LP) components, which in turn affected reaction time. Specifically, longer exposure durations were associated with lower VAN and higher LP, resulting in shorter reaction times and greater drift rate. In contrast to previous studies, the reverse relationship between VAN and LP may reflect a compensatory response to the reduced cognitive resources caused by high-altitude exposure. Additionally, increased LP and shorter reaction times with exposure duration may reflect a resistance to the high-altitude environment. We also conducted time-frequency analysis and found that theta power did not vary with exposure duration, suggesting that the reduction in cognitive resources remains stable in these individuals over time. Overall, our study provides new insights into the dynamic effects of high-altitude environments on awareness detection in the presence of reduced cognitive resources.


Assuntos
Altitude , Emigrantes e Imigrantes , Humanos , Tibet , Eletroencefalografia , Potenciais Evocados/fisiologia , Conscientização
4.
Physiol Behav ; 268: 114235, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178854

RESUMO

Many studies have indicated a strong relationship between cardiac and brain activities, both of which are sensitive to high-altitude exposure. This study combined a consciousness access task and electrocardiograms (ECG) to uncover conscious awareness in response to high-altitude exposure and its relation to cardiac activity. When compared with the low-altitude groups, the behavioral results showed that the high-altitude participants shortened the time of access to visual awareness of grating orientation, which was accompanied by a faster heart rate, excluding the influence of pre-stimulus heart rate, extent of cardiac deceleration after presenting the stimulus, and task difficulty. Although there were post-stimulation cardiac deceleration and post-response acceleration at both high and low altitudes, a slight increase in heart rate after stimulation at high altitudes may indicate that participants at high altitudes could quickly readjust their attention to the target stimulus. More importantly, the drift diffusion model (DDM) was used to fit the access time distribution of all participants. These results suggest that shorter time at high altitudes might be due to the lower threshold, suggesting that less evidence in high-altitude participants was required to access visual consciousness. The participants' heart rates also negatively predicted the threshold through a hierarchical drift diffusion modeling (HDDM) regression. These findings imply that individuals with higher heart rates at high altitudes have a greater cognitive burden.


Assuntos
Altitude , Coração , Humanos , Frequência Cardíaca/fisiologia , Eletrocardiografia , Estado de Consciência/fisiologia
5.
Hear Res ; 429: 108696, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669260

RESUMO

Multiple aspects of brain development are influenced by early sensory loss such as deafness. Despite growing evidence of changes in attentional functions for prelingual profoundly deaf, the brain mechanisms underlying these attentional changes remain unclear. This study investigated the relationships between differential attention and the resting-state brain network difference in deaf individuals from the perspective of brain network connectivity. We recruited 36 deaf individuals and 34 healthy controls (HC). We recorded each participant's resting-state electroencephalogram (EEG) and the event-related potential (ERP) data from the Attention Network Test (ANT). The coherence (COH) method and graph theory were used to build brain networks and analyze network connectivity. First, the ERPs of analysis in task states were investigated. Then, we correlated the topological properties of the network functional connectivity with the ERPs. The results revealed a significant correlation between frontal-occipital connection in the resting state and the amplitude of alert N1 amplitude in the alpha band. Specifically, clustering coefficients and global and local efficiency correlate negatively with alert N1 amplitude, whereas the characteristic path length positively correlates with alert N1 amplitude. In addition, deaf individuals exhibited weaker frontal-occipital connections compared to the HC group. In executive control, the deaf group had longer reaction times and larger P3 amplitudes. However, the orienting function did not significantly differ from the HC group. Finally, the alert N1 amplitude in the ANT task for deaf individuals was predicted using a multiple linear regression model based on resting-state EEG network properties. Our results suggest that deafness affects the performance of alerting and executive control while orienting functions develop similarly to hearing individuals. Furthermore, weakened frontal-occipital connections in the deaf brain are a fundamental cause of altered alerting functions in the deaf. These results reveal important effects of brain networks on attentional function from the perspective of brain connections and provide potential physiological biomarkers to predicting attention.


Assuntos
Surdez , Eletroencefalografia , Humanos , Encéfalo , Potenciais Evocados/fisiologia , Função Executiva/fisiologia
6.
Brain Sci ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35624972

RESUMO

High-altitude exposure can negatively impact one's ability to accurately perceive time. This study focuses on Chinese migrants who have traveled to the Tibetan plateau and explores the effects of high-altitude exposure on their time interval judgment abilities based on three separate studies. In Study 1, it was found that exposure to high altitudes negatively impacted the time interval judgment functions of the migrants compared with a low-altitude control group; they exhibited a prolonged response time (540 ms: p = 0.006, 95% CI (−1.70 −0.32)) and reduced accuracy (1080 ms: p = 0.032, 95% CI (0.06 1.26)) in certain behavioral tasks. In Study 2, the results showed that high-altitude exposure and sleepiness had an interactive effect on time interval judgment (1080 ms) (p < 0.05, 95% CI (−0.83 −0.40)). To further verify our interaction hypothesis, in Study 3, we investigated the time interval judgment of interactions between acute high-altitude exposure and sleepiness level. The results revealed that the adaptation effect disappeared and sleepiness significantly exacerbated the negative effects of high-altitude exposure on time interval judgment (p < 0.001, 95% CI (−0.85 −0.34)). This study is the first to examine the effects of high-altitude exposure on time interval judgment processing functions and the effects of sleep-related factors on individual time interval judgment.

7.
Brain Sci ; 12(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326315

RESUMO

The morphology of the hippocampus and amygdala can be significantly affected by a long-term hypoxia-induced inflammatory response. Cardiorespiratory fitness (CRF) has a significant effect on the neuroplasticity of the hippocampus and amygdala by countering inflammation. However, the role of CRF is still largely unclear at high altitudes. Here, we investigated brain limbic volumes in participants who had experienced long-term hypoxia exposure in Tibet (3680 m), utilizing high-resolution structural images to allow the segmentation of the hippocampus and amygdala into their constituent substructures. We recruited a total of 48 participants (48 males; aged = 20.92 ± 1.03 years) to undergo a structural 3T MRI, and the levels of maximal oxygen uptake (VO2max) were measured using a cardiorespiratory function test. Inflammatory biomarkers were also collected. The participants were divided into two groups according to the levels of median VO2max, and the analysis showed that the morphological indexes of subfields of the hippocampus and amygdala of the lower CRF group were decreased when compared with the higher CRF group. Furthermore, the multiple linear regression analysis showed that there was a higher association with inflammatory factors in the lower CRF group than that in the higher CRF group. This study suggested a significant association of CRF with hippocampus and amygdala volume, which may be related to hypoxic stress in high-altitude environments. A better CRF reduced physiological stress and a decrease in the inflammatory response was observed, which may be related to the increased oxygen transport capacity of the body.

8.
Neurosci Bull ; 38(2): 166-180, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34435318

RESUMO

Neuroscientists have emphasized visceral influences on consciousness and attention, but the potential neurophysiological pathways remain under exploration. Here, we found two neurophysiological pathways of heart-brain interaction based on the relationship between oxygen-transport by red blood cells (RBCs) and consciousness/attention. To this end, we collected a dataset based on the routine physical examination, the breaking continuous flash suppression (b-CFS) paradigm, and an attention network test (ANT) in 140 immigrants under the hypoxic Tibetan environment. We combined electroencephalography and multilevel mediation analysis to investigate the relationship between RBC properties and consciousness/attention. The results showed that RBC function, via two independent neurophysiological pathways, not only triggered interoceptive re-representations in the insula and awareness connected to orienting attention but also induced an immune response corresponding to consciousness and executive control. Importantly, consciousness played a fundamental role in executive function which might be associated with the level of perceived stress. These results indicated the important role of oxygen-transport in heart-brain interactions, in which the related stress response affected consciousness and executive control. The findings provide new insights into the neurophysiological schema of heart-brain interactions.


Assuntos
Estado de Consciência , Percepção Visual , Conscientização , Encéfalo , Humanos , Oxigênio
9.
Front Hum Neurosci ; 15: 664039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276324

RESUMO

The present study aimed to explore the cortical activity underlying mental rotation in high-altitude immigrants via the event-related desynchronization (ERD), the electroencephalogram time-frequency analysis, and source localization based on electroencephalographic data. When compared with the low-altitude individuals, the reaction time of mental rotation tasks was significantly slower in immigrants who had lived in high-altitude areas for 3 years. The time-frequency analysis showed that the alpha ERD and the beta ERD within the time window (400-700 ms) were decreased during the mental rotation tasks in these immigrants. The decreased ERD was observed at the parietal-occipital regions within the alpha band and at the central-parietal regions within the beta band. The decreased ERD might embody the sensorimotor-related cortical activity from hypoxia, which might be involved in cognitive control function in high-altitude immigrants, which provided insights into the neural mechanism of spatial cognition change on aspect of embodied cognition due to high-altitude exposure.

10.
Sheng Li Xue Bao ; 73(2): 286-294, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33903890

RESUMO

Many studies have shown that high-altitude exposure could significantly influence human cognition, and the approaches which could enhance the human cognition in high-altitude hypoxia environment attract great attention. In the present study, we recruited a total of 60 subjects who had been migrated to Tibet University as adults for more than one year. These participants were randomly divided into the experimental group and the control group. The participants in the experimental group were instructed to complete a hyperbaric oxygen treatment, and those in the control group just completed a wait condition. By using the attention network test (ANT), the changes of the attention function before and after a single session of hyperbaric oxygen treatment were explored. The results showed that single hyperbaric oxygen treatment significantly improved the orienting function of attention, with an obvious post-intervention effect, but not the alerting and conflict function of attention. We also found a strong association between alerting function and conflict function after the end of intervention, suggesting the change of the overall performance of attention function. The present findings might suggest that the improvement of attention function by a single session of hyperbaric oxygen intervention is derived from the increase of general cognitive resources, rather than the transfer of cognitive resources within the attention system.


Assuntos
Oxigenoterapia Hiperbárica , Migrantes , Adulto , Humanos , Orientação , Oxigênio , Tempo de Reação , Tibet
11.
Sheng Li Xue Bao ; 72(2): 181-189, 2020 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-32328612

RESUMO

Long-term exposure to high altitude affects spatial working memory. Previous studies have focused on the analysis of electroencephalogram (EEG) components in time domain rather than in frequency domain. To explore the influence of long-term high altitude exposure on time dynamic characteristics and neural oscillation process of the spatial working memory, n-back task combined with the technology of event related potential recording was performed on 20 young migrants who grew at low altitude before the age of 18 and moved to high altitude more than three years ago, and 21 young people who had never been to the high altitude. EEG data were recorded, and the time domain and frequency domain analyses were performed. The results showed that the response time was longer and the accuracy rate was lower under the 2-back condition in the high altitude group compared with those in low altitude group. The late positive potential (LPP) amplitude was more negative, P2 amplitude was more positive in the 2-back condition, and the power value of early delta frequency band (1-4 Hz, 160-300 ms) was larger, while the power values of late delta frequency band (1-4 Hz, 450-650 ms) and theta frequency band (4-8 Hz, 450-650 ms) were smaller in the high altitude group compared with those in low altitude group. The results suggested that long-term exposure to high altitude affected the spatial working memory ability of the migrants, which was reflected in the lack of attention resources in the later matching stage, decreased response inhibition ability and information maintenance ability, and thus resulted in impaired spatial working memory.


Assuntos
Altitude , Encéfalo/fisiopatologia , Memória de Curto Prazo , Memória Espacial , Migrantes , Eletroencefalografia , Humanos , Tempo de Reação
12.
Sheng Li Xue Bao ; 71(6): 833-838, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31879738

RESUMO

Exposure to a high altitude hypoxia environment has significant negative effects on human central nervous system. Many previous studies have explored the influence of the high altitude environment on human color perception in a simulated high altitude environment or in an environment acutely exposed to high altitude, but little has been done in migrators and natives exposed to high altitude and low oxygen for a long period of time. In this study, the minimal-change method was used to examine whether the color perception of red, green, blue and yellow was affected by the high altitude in 30 plain residents, 30 Han migrators who have lived in the high altitude for 2 years, and 28 high-altitude-adapted Tibetan natives. The results showed that long-term high altitude exposure had the most significant effect on the blue and red color perception in the natives and the migrators, with the effect on the blue color being significantly greater than that on the red color. However, the effects on green color processing only happened to the natives. The results suggest that there is an internal correlation between blood supply and selectivity changes of visual color processing caused by exposure to the plateau environment.


Assuntos
Altitude , Percepção de Cores , China , Percepção de Cores/fisiologia , Humanos , Hipóxia , Oxigênio/metabolismo
13.
PLoS One ; 13(5): e0197515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782538

RESUMO

A plantation of 5-year-old poplar Populus × euramericana cv. 'Neva' was used to study the regulatory effects of root pruning on nutrients, photosynthetic characteristics, and water-use efficiency (WUE) of leaves and growth rates of diameter at breast height (DBH; 1.3 m), tree height, and volume. Six root-pruning treatments were conducted with different combinations of intensity (at a distance of six, eight or ten times DBH from the trunk) and orientation (on two or four sides of the trees). Results showed that the N, P, K, photosynthetic rate, transpiration rate, and stomatal conductance of leaves were all significantly decreased by root pruning over the initial period following root pruning (30 days), but increased in the subsequent investigations. The values of the above indexes peaked in 8-2 treatment (i.e., eight times DBH distance on two sides). The leaf WUE in 8-2 treatment, and average growth rates of DBH, tree height and volume, were the highest among all treatments within 3 years of root pruning. The results indicated that the root pruning based on the appropriate selection of intensity and orientation had significant positive effects on leaf nutrients, photosynthesis, and growth of trees in a closed-canopy poplar plantation.


Assuntos
Populus/crescimento & desenvolvimento , Populus/metabolismo , Biomassa , China , Produção Agrícola/métodos , Fósforo/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transpiração Vegetal , Populus/anatomia & histologia , Potássio/metabolismo , Sódio/metabolismo , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
14.
PLoS One ; 12(11): e0187685, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117215

RESUMO

This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.


Assuntos
Agricultura/métodos , Raízes de Plantas/metabolismo , Populus/metabolismo , Microbiologia do Solo , Solo/química , Biomassa , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Potássio/análise , Rizosfera , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1046-1052, 2016 Apr 22.
Artigo em Chinês | MEDLINE | ID: mdl-29732758

RESUMO

A pot experiment including five treatments, i.e., CK (neither fertilizer nor super absorbent polymers), U (urea alone), S [super absorbent polymers (SAP) alone], SUM (SAP mixed with urea) and SUG (gel made of SAP and urea) was conducted to evaluate their effects on fine root morphological characteristics, fine root absorption area, fine root nitrogen metabolism and nitrogen use efficiency of Platycladus orientalis bareroot seedlings. Results showed that compared with U treatment, the SUG treatment significantly increased the biomass, length, specific root length, surface area and volume of fine root. The total absorption area and active absorption area of fine root were also increased remarkably under the SUG treatment. The specific root length in the SUG treatment was increased by 34.7%, 37.9%, 41.1% and 12.4% compared with the treatments of CK, U, S and SUM, respectively. Compared with the U treatment, the activities of nitrate reductase, glutamine synthase, glutamate synthase and glutamate dehydrogenase in fine root of the SUG treatment was improved by 41.2%, 76.6%, 30.7% and 125.8%, respectively, while the ratio of GS to GDH decreased. Not only the ground diameter and plant height, but also the dry matter accumulation of aboveground and underground parts was remarkably enhanced under the SUG treatment. The nitrogen use efficiency was 40.7% in the SUG treatment, being 118.8% and 44.5% higher than the U and SUM treatments, respectively. Gel made of SAP and urea was able to significantly increase the nitrogen use efficiency, promote the growth and enhance the ability of drought resistance by improving the morphological characteristics, enhancing the absorption area and key enzymes activities of nitrogen metabolism in the fine root of P. orientalis bareroot seedlings.


Assuntos
Cupressaceae/crescimento & desenvolvimento , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Ureia , Biomassa , Fertilizantes , Géis , Glutamato Desidrogenase/metabolismo , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo , Polímeros
16.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1475-82, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25129951

RESUMO

Effects of four plant growth-promoting rhizobacteria (PGPR) , namely Pseudomonas sp. YT3, Bacillus subtilis DZ1, B. cereus L90 and B. fusiformis L13 on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought stress were investigated. Results showed that drought stress had little effect on available nutrients of walnut rhizosphere soil, but significantly decreased the activity of organic carbon by 18.4% and increased the pH from 7.34 to 7.79. Under drought stress condition, the inoculation of Bacillus cereus L90 significantly increased high-labile organic carbon in walnut rhizosphere by 14.5% relative to the un-inoculated control, and decreased the pH to 7.41. Compared with the irrigated control, the total microbial populations, root exudates, microbial biomass carbon, and microbial biomass nitrogen in walnut rhizosphere soil were significantly decreased by 36.0%, 20.7%, 33.5% and 30.7%, respectively, because of drought stress. However, L90 inoculation decreased these deficits to 14.1%, 10.3%, 12.1% and 12.7%, respectively. Some terminal restriction fragments (T-RFs) disappeared under the drought condition and PGPR inoculation had great influence on T-RFs according to Terminal Restriction Fragment Length Polymorphism profiles. The Margalef index and the Shannon index of walnut rhizosphere soil significantly decreased, but the Simpson index increased relative to the irrigated control. Compared with the un-inoculated control, the Margalef index significantly increased from 0.42 to 0.99, as well as the Shannon index increased from 0.52 to 0.98. However, the Simpson index de- creased from 0.60 to 0.39. Inoculating YT3, DZ1 and L13 had weaker effects on the biological characteristics of walnut rhizosphere soil compared to inoculating L90, suggesting L90 inoculation could interfere with the suppression of drought stress to the biological characteristics of walnut rhizosphere soil.


Assuntos
Secas , Juglans/microbiologia , Rizosfera , Microbiologia do Solo , Bacillus/fisiologia , Biomassa , Carbono/análise , Nitrogênio/análise , Raízes de Plantas , Pseudomonas/fisiologia , Solo
18.
Huan Jing Ke Xue ; 31(7): 1619-24, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20825035

RESUMO

To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.


Assuntos
Fertilizantes , Substâncias Húmicas/análise , Nitrogênio/análise , Solo/química , Poluição da Água/prevenção & controle , Produtos Agrícolas/crescimento & desenvolvimento , Nitratos/análise , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA