RESUMO
BACKGROUND: Triple-negative breast cancer (TNBC) represents a highly aggressive subset of breast malignancies characterized by its challenging clinical management and unfavorable prognosis. While TFAP2A, a member of the AP-2 transcription factor family, has been implicated in maintaining the basal phenotype of breast cancer, its precise regulatory role in TNBC remains undefined. METHODS: In vitro assessments of TNBC cell growth and migratory potential were conducted using MTS, colony formation, and EdU assays. Quantitative PCR was employed to analyze mRNA expression levels, while Western blot was utilized to evaluate protein expression and phosphorylation status of AKT and ERK. The post-transcriptional regulation of TFAP2A by miR-8072 and the transcriptional activation of SNAI1 by TFAP2A were investigated through luciferase reporter assays. A xenograft mouse model was employed to assess the in vivo growth capacity of TNBC cells. RESULTS: Selective silencing of TFAP2A significantly impeded the proliferation and migration of TNBC cells, with elevated TFAP2A expression observed in breast cancer tissues. Notably, TNBC patients exhibiting heightened TFAP2A levels experienced abbreviated overall survival. Mechanistically, TFAP2A was identified as a transcriptional activator of SNAI1, a crucial regulator of epithelial-mesenchymal transition (EMT) and cellular proliferation, thereby augmenting the oncogenic properties of TFAP2A in TNBC. Moreover, miR-8072 was unveiled as a negative regulator of TFAP2A, exerting potent inhibitory effects on TNBC cell growth and migration. Importantly, the tumor-suppressive actions mediated by the miR-8072/TFAP2A axis were intricately associated with the attenuation of AKT/ERK signaling cascades and the blockade of EMT processes. CONCLUSIONS: Our findings unravel the role and underlying molecular mechanism of TFAP2A in driving tumorigenesis of TNBC. Targeting the TFAP2A/SNAI1 pathway and utilizing miR-8072 as a suppressor represent promising therapeutic strategies for treating TNBC.
Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Fatores de Transcrição da Família Snail , Fator de Transcrição AP-2 , Neoplasias de Mama Triplo Negativas , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , MicroRNAs/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação para Baixo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Breast cancer is one of the most frequent malignancies and the second leading cause of cancer-related mortality in women. MicroRNAs play a key role in breast cancer development and progression. microRNA(miR)-8084 has been observed an aberrant expression in breast cancer. However, the functions and regulatory axes of miR-8084, particularly in breast cancer, were not entirely clear. METHODS: miR-8084 expression in breast cancer were investigated in a GEO dataset by in silico analysis and in 42 paired tumor tissues by qPCR. The effects of deregulation of miR-8084 on breast cancer cell proliferation, migration and invasion in vitro and tumorigenicity in vivo were examined by colony-formation assay, wound healing assay, transwell assay and nude mouse subcutaneous tumor formation model. The target gene of miR-8084 were predicted by TargetScan and miRDB, and confirmed by luciferase reporter system. The roles of miR-8084 in the breast cancer cell proliferation, apoptosis and epithelial-mesenchymal transition (EMT) were investigated by MTS, FACS and associated-marker detection by western blot. RESULTS: miR-8084 is significantly up-regulated in both serum and malignant tissues from the source of breast cancer patients. miR-8084 promotes the proliferation of breast cancer cells by activating ERK1/2 and AKT. Meanwhile miR-8084 inhibits apoptosis by decreasing p53-BAX related pathway. miR-8084 also enhances migration and invasion by inducing EMT. Moreover, the tumor suppressor ING2 is a potential target of miR-8084, and miR-8084 regulatory axes contribute to pro-tumor effect, at least partially through regulating ING2. CONCLUSION: Our results strongly suggest that miR-8084 functions as an oncogene that promotes the development and progression of breast cancer, and miR-8084 is a potential new diagnostic marker and therapeutic target of breast cancer.