Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Mol Metab ; 82: 101905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431218

RESUMO

OBJECTIVE: Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS: Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS: In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS: KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças não Transmissíveis , Serpinas , Humanos , Camundongos , Animais , Glucose/metabolismo , Resistência à Insulina/fisiologia , Serpinas/genética , Sobrepeso , Insulina/metabolismo , Obesidade/metabolismo , Camundongos Transgênicos , Dieta Hiperlipídica/efeitos adversos , Homeostase , Redução de Peso , RNA Mensageiro/metabolismo
2.
Exp Eye Res ; 240: 109790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224848

RESUMO

Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.


Assuntos
Doenças da Córnea , Diabetes Mellitus , Humanos , Substância Própria/metabolismo , Córnea/metabolismo , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Hipóxia/metabolismo
3.
Front Med ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216854

RESUMO

Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.

4.
Int J Pharm ; 650: 123675, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38061500

RESUMO

Fenofibrate has shown therapeutic effects on diabetic retinopathy. However, fenofibrate can be rapidly cleared from the eye after a single intravitreal injection. Here, we aim to develop fenofibrate loaded PLGA microparticles (Feno-MP) with high drug loading and sustained in vitro release up to 6 months suitable for intravitreal injection. First, orthogonal array experimental design was applied for formulation optimization. The selected formulation parameters were used to formulate Feno-MP using homogenization method and direct membrane emulsification method. Both methods generated Feno-MP with high drug loading and sustained in vitro drug release more than 140 days. Unlike the polydisperse Feno-MP prepared using homogenization method, membrane emulsification method generated Feno-MP with uniform size distribution. By controlling the membrane pore size, 1.5 µm, 8 µm and 16 µm Feno-MP were formulated and we found that larger Feno-MP demonstrated higher drug loading, more sustained drug release in vitro with less burst drug release than the smaller Feno-MP. In conclusion, we developed Feno-MP with high drug loading and sustained release profile, and elucidated that changing the particle size could have notable impacts on drug loading and release kinetics. Formulating Feno-MP with uniform size distribution by membrane emulsification method would benefit the batch-to-batch repeatability.


Assuntos
Fenofibrato , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Liberação Controlada de Fármacos , Tamanho da Partícula , Microesferas , Preparações de Ação Retardada
5.
Proc Natl Acad Sci U S A ; 120(51): e2311647120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085785

RESUMO

Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal γδ T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to characterize the profiles of immune cells in mouse choroid. We found that γδ T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6. This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal γδ T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.


Assuntos
Degeneração Macular , Degeneração Retiniana , Animais , Camundongos , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Degeneração Macular/patologia , Retina/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo
6.
Exp Eye Res ; 237: 109717, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944849

RESUMO

Prolonged hyperglycemia during diabetes mellitus (DM) is associated with severe complications that may affect both the anterior and posterior ocular segments, leading to impaired vision or blindness. The cornea is a vital part of the eye that has a dual role as a protective transparent barrier and as a major refractive structure and is likewise negatively affected by hyperglycemia in DM. Understanding the cellular and molecular mechanisms underlying the phenotypic changes associated with DM is critical to developing targeted therapies to promote tissue integrity. In this proof-of-concept study, we applied a cell sheet-based approach to generate stacked constructs of physiological corneal thickness using primary human corneal fibroblasts isolated from cadaveric control (healthy), Type 1 DM and Type 2 DM corneal tissues. Self-assembled corneal stromal sheets were generated after 2 weeks in culture, isolated, and subsequently assembled to create stacked constructs, which were evaluated using transmission electron microscopy. Analysis of gene expression patterns revealed significant downregulation of fibrotic markers, α-smooth muscle actin, and collagen type 3, with stacking in Type 2 DM constructs when compared to controls. IGF1 expression was significantly upregulated in Type 2 DM constructs compared to controls with a significant reduction induced by stacking. This study describes the development of a thicker, self-assembled corneal stromal construct as a platform to evaluate phenotypic differences associated with DM-derived corneal fibroblasts and enable the development of targeted therapeutics to promote corneal integrity.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Substância Própria/metabolismo , Córnea , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo
7.
J Diabetes Complications ; 37(10): 108597, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659140

RESUMO

microRNAs (miRs), including miR-142, modulate gene expression and processes implicated in vascular damage and may serve as therapeutic targets and agents, including in Type 1 diabetes (T1D). The project aimed to assess whether miR-142 levels differ between people with and without T1D, and to analyse miR-142 associations with cardiovascular (CVD) risk factors. Intracellular miRs were isolated from whole blood cell pellets using TRIzol-based methodology. In a cross-sectional study in 102 adults cellular miR-142 levels were significantly higher (on unadjusted and adjusted analyses) in 69 adults with T1D relative to 33 non-diabetic subjects: mean ± SD, 3.53 ± 3.66 vs. 1.25 ± 0.78, p < 0.0002, but were not related to HbA1c levels. Further miR-142 research, including longitudinal and intervention studies and basic science are of interest. miR-142 may be valuable in clinical practice for predicting health and as a treatment target.

8.
Front Neurol ; 14: 1210991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638201

RESUMO

Objective: The purpose of this paper is to compare the differences in the features of multifrequency electrical impedance tomography (MFEIT) images of human heads between healthy subjects and patients with brain diseases and to explore the possibility of applying MFEIT to intracranial abnormality detection. Methods: Sixteen healthy volunteers and 8 patients with brain diseases were recruited as subjects, and the cerebral MFEIT data of 9 frequencies in the range of 21 kHz - 100 kHz of all subjects were acquired with an MFEIT system. MFEIT image sequences were obtained according to certain imaging algorithms, and the area ratio of the ROI (AR_ROI) and the mean value of the reconstructed resistivity change of the ROI (MVRRC_ROI) on both the left and right sides of these images were extracted. The geometric asymmetry index (GAI) and intensity asymmetry index (IAI) were further proposed to characterize the symmetry of MFEIT images based on the extracted indices and to statistically compare and analyze the differences between the two groups of subjects on MFEIT images. Results: There were no significant differences in either the AR_ROI or the MVRRC_ROI between the two sides of the brains of healthy volunteers (p > 0.05); some of the MFEIT images mainly in the range of 30 kHz - 60 kHz of patients with brain diseases showed stronger resistivity distributions (larger area or stronger signal) that were approximately symmetric with the location of the lesions. However, statistical analysis showed that the AR_ROI and the MVRRC_ROI on the healthy sides of MFEIT images of patients with unilateral brain disease were not significantly different from those on the affected side (p > 0.05). The GAI and IAI were higher in all patients with brain diseases than in healthy volunteers except for 80 kHz (p < 0.05). Conclusion: There were significant differences in the geometric symmetry and the signal intensity symmetry of the reconstructed targets in the MFEIT images between healthy volunteers and patients with brain diseases, and the above findings provide a reference for the rapid detection of intracranial abnormalities using MFEIT images and may provide a basis for further exploration of MFEIT for the detection of brain diseases.

9.
Invest Ophthalmol Vis Sci ; 64(11): 33, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642632

RESUMO

Purpose: To develop and optimize a method to monitor real-time mitochondrial function by measuring the oxygen consumption rate (OCR) in murine corneal biopsy punches with a Seahorse extracellular flux analyzer. Methods: Murine corneal biopsies were obtained using a biopsy punch immediately after euthanasia. The corneal metabolic profile was assessed using a Seahorse XFe96 pro analyzer, and mitochondrial respiration was analyzed with specific settings. Results: Real-time adenosine triphosphate rate assay showed that mitochondrial oxidative phosphorylation is a major source of adenosine triphosphate production in ex vivo live murine corneal biopsies. Euthanasia methods (carbon dioxide asphyxiation vs. overdosing on anesthetic drugs) did not affect corneal OCR values. Mouse corneal biopsy punches in 1.5-mm diameter generated higher and more reproducible OCR values than those in 1.0-mm diameter. The biopsy punches from the central and off-central cornea did not show significant differences in OCR values. There was no difference in OCR reading by the tissue orientations (the epithelium side up vs. the endothelium side up). No significant differences were found in corneal OCR levels between sexes, strains (C57BL/6J vs. BALB/cJ), or ages (4, 8, and 32 weeks). Using this method, we showed that the wound healing process in the mouse cornea affected mitochondrial activity. Conclusions: The present study validated a new strategy to measure real-time mitochondrial function in fresh mouse corneal tissues. This procedure should be helpful for studies of the ex vivo live corneal metabolism in response to genetic manipulations, disease conditions, or pharmacological treatments in mouse models.


Assuntos
Córnea , Respiração , Animais , Camundongos , Camundongos Endogâmicos C57BL , Biópsia , Trifosfato de Adenosina , Mitocôndrias
10.
Nat Rev Urol ; 20(12): 739-761, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37414959

RESUMO

Somatic stem cells have been obtained from solid organs and tissues, including the bone marrow, placenta, corneal stroma, periosteum, adipose tissue, dental pulp and skeletal muscle. These solid tissue-derived stem cells are often used for tissue repair, disease modelling and new drug development. In the past two decades, stem cells have also been identified in various body fluids, including urine, peripheral blood, umbilical cord blood, amniotic fluid, synovial fluid, breastmilk and menstrual blood. These body fluid-derived stem cells (BFSCs) have stemness properties comparable to those of other adult stem cells and, similarly to tissue-derived stem cells, show cell surface markers, multi-differentiation potential and immunomodulatory effects. However, BFSCs are more easily accessible through non-invasive or minimally invasive approaches than solid tissue-derived stem cells and can be isolated without enzymatic tissue digestion. Additionally, BFSCs have shown good versatility in repairing genitourinary abnormalities in preclinical models through direct differentiation or paracrine mechanisms such as pro-angiogenic, anti-apoptotic, antifibrotic, anti-oxidant and anti-inflammatory effects. However, optimization of protocols is needed to improve the efficacy and safety of BFSC therapy before therapeutic translation.


Assuntos
Líquidos Corporais , Células-Tronco Mesenquimais , Gravidez , Adulto , Feminino , Humanos , Células-Tronco , Placenta , Diferenciação Celular/fisiologia
11.
Adv Exp Med Biol ; 1415: 415-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440066

RESUMO

The retina pigmented epithelium 65 kDa protein (RPE65) is an essential enzyme in the visual cycle that regenerates the 11-cis-retinal chromophore obligatory for vision. Mutations in RPE65 are associated with blinding diseases. D477G (C.1430G > A) is the only known RPE65 variant to cause autosomal dominant retinitis pigmentosa (adRP). Previously, we reported that the heterozygous D477G knock-in (WT/KI) mice exposed to dim light intensity demonstrated delayed chromophore regeneration rates and slowed recovery of photoreceptor sensitivity following photobleaching. However, visual function and retinal architecture were indistinguishable from the wild-type (WT) mice. In this study, when maintained under the physiological day-light intensity (2 K lux), the WT/KI heterozygous mice displayed retina degeneration and reduced electroretinography (ERG) amplitude, recapitulating that observed in human patients. Our findings indicated the importance of the light environment in the mechanism of RPE65 D477G pathogenicity.


Assuntos
Degeneração Retiniana , cis-trans-Isomerases , Humanos , Camundongos , Animais , Modelos Animais de Doenças , cis-trans-Isomerases/genética , Retina/metabolismo , Mutação , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Epitélio
12.
ACS Med Chem Lett ; 14(6): 766-776, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312852

RESUMO

The role of peroxisome proliferator-activated receptor alpha (PPARα) in retinal biology is clarifying, and evidence demonstrates that novel PPARα agonists hold promising therapeutic utility for diseases like diabetic retinopathy and age-related macular degeneration. Herein, we disclose the design and initial structure-activity relationships for a new biaryl aniline PPARα agonistic chemotype. Notably, this series exhibits subtype selectivity for PPARα over other isoforms, a phenomenon postulated to be due to the unique benzoic acid headgroup. This biphenyl aniline series is sensitive to B-ring functionalization but allows isosteric replacement, and provides an opportunity for C-ring extension. From this series, 3g, 6j, and 6d were identified as leads with <90 nM potency in a cell-based luciferase assay cell and exhibited efficacy in various disease-relevant cell contexts, thereby setting the stage for further characterization in more advanced in vitro and in vivo models.

13.
Future Med Chem ; 15(8): 717-729, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166075

RESUMO

Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Degeneração Macular , Doenças Retinianas , Humanos , Retinopatia Diabética/tratamento farmacológico , Estudos Prospectivos , Nucleotidiltransferases/metabolismo , Degeneração Macular/tratamento farmacológico , Inflamação/metabolismo
14.
Diabetes ; 72(7): 958-972, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058417

RESUMO

Monocyte activation plays an important role in diabetic complications such as diabetic retinopathy (DR). However, the regulation of monocyte activation in diabetes remains elusive. Fenofibrate, an agonist of peroxisome proliferator-activated receptor-α (PPARα), has shown robust therapeutic effects on DR in patients with type 2 diabetes. Here we found that PPARα levels were significantly downregulated in monocytes from patients with diabetes and animal models, correlating with monocyte activation. Fenofibrate attenuated monocyte activation in diabetes, while PPARα knockout alone induced monocyte activation. Furthermore, monocyte-specific PPARα overexpression ameliorated, while monocyte-specific PPARα knockout aggravated monocyte activation in diabetes. PPARα knockout impaired mitochondrial function while also increasing glycolysis in monocytes. PPARα knockout increased cytosolic mitochondrial DNA release and activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in monocytes under diabetic conditions. STING knockout or STING inhibitor attenuated monocyte activation induced by diabetes or by PPARα knockout. These observations suggest that PPARα negatively regulates monocyte activation through metabolic reprogramming and interaction with the cGAS-STING pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Fenofibrato , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Monócitos/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
15.
Hum Gene Ther ; 34(13-14): 639-648, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014074

RESUMO

The use of AAV-RPE65 vectors for gene supplementation has achieved spectacular success as a treatment for individuals with autosomal recessive retinal disease caused by biallelic mutations in the visual cycle gene RPE65. However, the efficacy of this approach in treating autosomal dominant retinitis pigmentosa (adRP) associated with a monoallelic mutation encoding a rare D477G RPE65 variant has not been studied. Although lacking a severe phenotype, we now find that knock-in mice heterozygous for D477G RPE65 (D477G KI mice) can be used to evaluate outcomes of AAV-RPE65 gene supplementation. Total RPE65 protein levels, which are decreased in heterozygous D477G KI mice, were doubled following subretinal delivery of rAAV2/5.hRPE65p.hRPE65. In addition, rates of recovery of the chromophore 11-cis retinal after bleaching were significantly increased in eyes that received AAV-RPE65, consistent with increased RPE65 isomerase activity. While dark-adapted chromophore levels and a-wave amplitudes were not affected, b-wave recovery rates were modestly improved. The present findings establish that gene supplementation enhances 11-cis retinal synthesis in heterozygous D477G KI mice and complement previous studies showing that chromophore therapy results in improved vision in individuals with adRP associated with D477G RPE65.


Assuntos
Retina , Retinose Pigmentar , Animais , Camundongos , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Mutação , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo
16.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903821

RESUMO

BiFeO3-based ceramics possess an advantage over large spontaneous polarization and high Curie temperature, and are thus widely explored in the field of high-temperature lead-free piezoelectrics and actuators. However, poor piezoelectricity/resistivity and thermal stability of electrostrain make them less competitive. To address this problem, (1 - x) (0.65BiFeO3-0.35BaTiO3)-xLa0.5Na0.5TiO3 (BF-BT-xLNT) systems are designed in this work. It is found that piezoelectricity is significantly improved with LNT addition, which is contributed by the phase boundary effect of rhombohedral and pseudocubic phase coexistence. The small-signal and large-signal piezoelectric coefficient (d33 and d33*) peaks at x = 0.02 with 97 pC/N and 303 pm/V, respectively. The relaxor property and resistivity are enhanced as well. This is verified by Rietveld refinement, dielectric/impedance spectroscopy and piezoelectric force microscopy (PFM) technique. Interestingly, a good thermal stability of electrostrain is obtained at x = 0.04 composition with fluctuation η = 31% (Smax'-SRTSRT×100%), in a wide temperature range of 25-180 °C, which is considered as a compromise of negative temperature dependent electrostrain for relaxors and the positive one for ferroelectric matrix. This work provides an implication for designing high-temperature piezoelectrics and stable electrostrain materials.

17.
Proc Natl Acad Sci U S A ; 120(13): e2217576120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943878

RESUMO

Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , PPAR alfa , Camundongos , Humanos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Córnea/metabolismo , Cicatrização/fisiologia , Camundongos Knockout , Mitocôndrias/metabolismo
18.
Cell Rep ; 42(2): 112091, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36763501

RESUMO

Retinosomes are intracellular lipid bodies found in the retinal pigment epithelium (RPE). They contain retinyl esters (REs) and are thought to be involved in visual chromophore regeneration during dark adaptation and in case of chromophore depletion. However, key enzymes in chromophore regeneration, retinoid isomerase (RPE65), and lecithin:retinol acyltransferase (LRAT) are located in the endoplasmic reticulum (ER). The mechanism and the enzyme responsible for mobilizing REs from retinosomes remained unknown. Our study demonstrates that patatin-like phospholipase domain containing 2 (PNPLA2) mobilizes all-trans-REs from retinosomes. The absence of PNPLA2 in mouse eyes leads to a significant accumulation of lipid droplets in RPE cells, declined electroretinography (ERG) response, and delayed dark adaptation compared with those of WT control mouse. Our work suggests a function of PNPLA2 as an RE hydrolase in the RPE, mobilizing REs from lipid bodies and functioning as an essential component of the visual cycle.


Assuntos
Retinaldeído , Ésteres de Retinil , Animais , Camundongos , Eletrorretinografia , Epitélio Pigmentado da Retina , Vitamina A
19.
J Neuroinflammation ; 20(1): 24, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739434

RESUMO

BACKGROUND: Previous reports have indicated that disrupting the Wnt/ß-catenin pathway in dendritic cells (DCs) may affect the progression of autoimmune inflammation; however, the factors and timing that regulate Wnt/ß-catenin signaling have not been clearly understood. METHODS: Experimental autoimmune uveitis (EAU) mice and Vogt-Koyanagi-Harada disease (VKH) patient samples were used to detect the expression of Wnt/ß-catenin pathway genes. Western blot, real-time PCR, flow cytometry, and ELISA were performed to examine the expression of components of the Wnt/ß-catenin pathway and inflammatory factors. DC-specific ß-catenin knockout mice and 6-bromoindirubin-3'-oxime (BIO) administered mice were used to observe the effect of disrupting the Wnt pathway on EAU pathogenesis. RESULTS: Wnt/ß-catenin signaling was inhibited in DCs during the induction phase of EAU. The inhibition was mediated by pertussis toxin (PTX), which promoted DC maturation, in turn promoting pathogenic T cell proliferation and differentiation. In vivo experiments confirmed that deleting ß-catenin in DCs enhanced EAU severity, and pre-injection of PTX advanced EAU onset. Administration of a Wnt activator (BIO) limited the effects of PTX, in turn ameliorating EAU. CONCLUSIONS: Our results demonstrate that PTX plays a key role as a virulence factor in initiating autoimmune inflammation via DCs by inhibiting Wnt/ß-catenin signaling in EAU, and highlight the potential mechanism by which infection can trigger apparent autoimmunity.


Assuntos
Doenças Autoimunes , Uveíte , Camundongos , Animais , Toxina Pertussis/toxicidade , Autoimunidade , Via de Sinalização Wnt , beta Catenina/metabolismo , Uveíte/induzido quimicamente , Uveíte/tratamento farmacológico , Inflamação/metabolismo , Células Dendríticas
20.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497130

RESUMO

Microglial activation and subsequent pathological neuroinflammation contribute to diabetic retinopathy (DR). However, the underlying mechanisms of microgliosis, and means to effectively suppress pathological microgliosis, remain incompletely understood. Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor that regulates lipid metabolism. The present study aimed to determine if PPARα affects pathological microgliosis in DR. In global Pparα mice, retinal microglia exhibited decreased structural complexity and enlarged cell bodies, suggesting microglial activation. Microglia-specific conditional Pparα-/- (PCKO) mice showed decreased retinal thickness as revealed by optical coherence tomography. Under streptozotocin (STZ)-induced diabetes, diabetic PCKO mice exhibited decreased electroretinography response, while diabetes-induced retinal dysfunction was alleviated in diabetic microglia-specific Pparα-transgenic (PCTG) mice. Additionally, diabetes-induced retinal pericyte loss was exacerbated in diabetic PCKO mice and alleviated in diabetic PCTG mice. In cultured microglial cells with the diabetic stressor 4-HNE, metabolic flux analysis demonstrated that Pparα ablation caused a metabolic shift from oxidative phosphorylation to glycolysis. Pparα deficiency also increased microglial STING and TNF-α expression. Taken together, these findings revealed a critical role for PPARα in pathological microgliosis, neurodegeneration, and vascular damage in DR, providing insight into the underlying molecular mechanisms of microgliosis in this context and suggesting microglial PPARα as a potential therapeutic target.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , PPAR alfa , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/patologia , Microglia/metabolismo , PPAR alfa/metabolismo , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA